897 resultados para Stimulus onset asynchrony
Resumo:
Prepulse inhibition of the blink reflex is widely applied to investigate information processing deficits in schizophrenia and other psychiatric patient groups. The present experiment investigated the hypothesis that prepulse inhibition reflects a transient process that protects preattentive processing of the prepulse. Participants were presented with pairs of blinkeliciting noises, some preceded by a prepulse at a variable stimulus onset asynchrony (SOA), and were asked to rate the intensity of the second noise relative to the first. Inhibition of blink amplitude was greater for a 110-dB (A) noise than for a 95-dB(A) noise with a 120-ms SOA, whereas there was no difference with a 30-ms SOA. The perceived intensity was also lower for the 110-dB(A) noise than for the 95-dB(A) noise with the 120-ms SOA, but not with the 30-ms SOA. The parallel results support a relationship between prepulse inhibition of response amplitude and perceived intensity. However, the prepulse did not reduce intensity ratings relative to control trials in some conditions, suggesting that prepulse inhibition is not always associated with an attenuation of the perceived impact of the blink-eliciting stimulus.
Resumo:
Onset asynchrony is arguably the most powerful grouping cue for the separation of temporally overlapping sounds (see Bregman 1990). A component that begins only 30–50 ms before the others makes a greatly reduced contribution to the timbre of a complex tone, or to the phonetic quality of a vowel (e.g. Darwin 1984). This effect of onset asynchrony does not necessarily imply a cognitive grouping process; instead it may result from peripheral adaptation in the response to the leading component in the few tens of milliseconds before the other components begin (e.g., Westerman and Smith 1984). However, two findings suggest that the effect of onset asynchrony cannot be explained entirely by peripheral adaptation. First, though the effect is smaller, the contribution of a component to the phonetic quality of a short-duration vowel is reduced when it ends after the other components (Darwin and Sutherland 1984; Roberts and Moore 1991).
Resumo:
Onset asynchrony is an important cue for segregating sound mixtures. A harmonic of a vowel that begins before the other components contributes less to vowel quality. This asynchrony effect can be partly reversed by accompanying the leading portion of the harmonic with an octave-higher captor tone. The original interpretation was that the captor and leading portion formed a perceptual group, but it has recently been shown that the captor effect depends on neither a common onset time nor harmonic relations with the leading portion. Instead, it has been proposed that the captor effect depends on wideband inhibition in the central auditory system. Physiological evidence suggests that such inhibition occurs both within and across ears. Experiment 1 compared the efficacy of a pure-tone captor presented in the same or opposite ear to the vowel and leading harmonic. Contralateral presentation was at least as effective as ipsilateral presentation. Experiment 2 used multicomponent captors in a more comprehensive evaluation of harmonic influences on captor efficacy. Three captors with different fundamental frequencies were used, one of which formed a consecutive harmonic series with the leading harmonic. All captors were equally effective, irrespective of the harmonic relationship. These findings support and refine the inhibitory account. © 2007 Acoustical Society of America.
Resumo:
Onset asynchrony is an important cue for auditory scene analysis. For example, a harmonic of a vowel that begins before the other components contributes less to the perceived phonetic quality. This effect was thought primarily to involve high-level grouping processes, because the contribution can be partly restored by accompanying the leading portion of the harmonic (precursor) with a synchronous captor tone an octave higher, and hence too remote to influence adaptation of the auditory-nerve response to that harmonic. However, recent work suggests that this restoration effect arises instead from inhibitory interactions relatively early in central auditory processing. The experiments reported here have reevaluated the role of adaptation in grouping by onset asynchrony and explored further the inhibitory account of the restoration effect. Varying the frequency of the precursor in the range ± 10% relative to the vowel harmonic (Experiment 1), or introducing a silent interval from 0 to 320 ms between the precursor and the vowel (Experiment 2), both produce effects on vowel quality consistent with those predicted from peripheral adaptation or recovery from it. However, there were some listeners for whom even the smallest gap largely eliminated the effect of the precursor. Consistent with the inhibitory account of the restoration effect, a contralateral pure tone whose frequency is close to that of the precursor is highly effective at restoring the contribution of the asynchronous harmonic (Experiment 3). When the frequencies match, lateralization cues arising from binaural fusion of the precursor and contralateral tone may also contribute to this restoration. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Resumo:
Feedforward inhibition deficits have been consistently demonstrated in a range of neuropsychiatric conditions using prepulse inhibition (PPI) of the acoustic startle eye-blink reflex when assessing sensorimotor gating. While PPI can be recorded in acutely decerebrated rats, behavioural, pharmacological and psychophysiological studies suggest the involvement of a complex neural network extending from brainstem nuclei to higher order cortical areas. The current functional magnetic resonance imaging study investigated the neural network underlying PPI and its association with electromyographically (EMG) recorded PPI of the acoustic startle eye-blink reflex in 16 healthy volunteers. A sparse imaging design was employed to model signal changes in blood oxygenation level-dependent (BOLD) responses to acoustic startle probes that were preceded by a prepulse at 120 ms or 480 ms stimulus onset asynchrony or without prepulse. Sensorimotor gating was EMG confirmed for the 120-ms prepulse condition, while startle responses in the 480-ms prepulse condition did not differ from startle alone. Multiple regression analysis of BOLD contrasts identified activation in pons, thalamus, caudate nuclei, left angular gyrus and bilaterally in anterior cingulate, associated with EMGrecorded sensorimotor gating. Planned contrasts confirmed increased pons activation for startle alone vs 120-ms prepulse condition, while increased anterior superior frontal gyrus activation was confirmed for the reverse contrast. Our findings are consistent with a primary pontine circuitry of sensorimotor gating that interconnects with inferior parietal, superior temporal, frontal and prefrontal cortices via thalamus and striatum. PPI processes in the prefrontal, frontal and superior temporal cortex were functionally distinct from sensorimotor gating.
Resumo:
We investigated the neural correlates of semantic priming by using event-related fMRI to record blood oxygen level dependent (BOLD) responses while participants performed speeded lexical decisions (word/nonword) on visually presented related versus unrelated prime-target pairs. A long stimulus onset asynchrony of 1000 ms was employed, which allowed for increased controlled processing and selective frequency-based ambiguity priming. Conditions included an ambiguous word prime (e.g. bank) and a target related to its dominant (e.g. money) or subordinate meaning (e.g. river). Compared to an unrelated condition, primed dominant targets were associated with increased activity in the LIFG, the right anterior cingulate and superior temporal gyrus, suggesting postlexical semantic integrative mechanisms, while increased right supramarginal activity for the unrelated condition was consistent with expectancy based priming. Subordinate targets were not primed and were associated with reduced activity primarily in occipitotemporal regions associated with word recognition, which may be consistent with frequency-based meaning suppression. These findings provide new insights into the neural substrates of semantic priming and the functional-anatomic correlates of lexical ambiguity suppression mechanisms.
Resumo:
Some results in the literature suggest that crossmodal attention is very sensitive to the features of the experimental protocol. The current work examined the possible contribution of the asynchrony between the onset of the cue and the target (SOA) and the kind of task performed by the observer to the manifestation of crossmodal attentional effect. In a first experiment, a target (Gabor patch), whose spatial frequency had to be discriminated, was presented 133 or 159 ms after an auditory cue, in a close location on the same side or in a distant location on the opposite side. The crossmodal attentional effect was observed only for the 159 ms SOA. In a second experiment, the SOA was again 133 ms, but the location of the target had to be discriminated, instead of its spatial frequency. A crossmodal attentional effect was observed. The results of these two experiments indicate that crossmodal attentional effect depends on the SOA and the task. It takes longer to develop when the task requires the discrimination of the spatial frequency of the target than the discrimination of its location.
Resumo:
Previous studies have shown both declining and stable semantic-memory abilities during healthy aging. There is consistent evidence that semantic processes involving controlled mechanisms weaken with age. In contrast, results of aging studies on automatic semantic retrieval are often inconsistent, probably due to methodological limitations and differences. The present study therefore examines age-related alterations in automatic semantic retrieval and memory structure with a novel combination of critical methodological factors, i.e., the selection of subjects, a well-designed paradigm, and electrophysiological methods that result in unambiguous signal markers. Healthy young and elderly participants performed lexical decisions on visually presented word/non-word pairs with a stimulus onset asynchrony (SOA) of 150 ms. Behavioral and electrophysiological data were measured, and the N400-LPC complex, an event-related potential component sensitive to lexical-semantic retrieval, was analyzed by power and topographic distribution of electrical brain activity. Both age groups exhibited semantic priming (SP) and concreteness effects in behavioral reaction time and the electrophysiological N400-LPC complex. Importantly, elderly subjects did not differ significantly from the young in their lexical decision and SP performances as well as in the N400-LPC SP effect. The only difference was an age-related delay measured in the N400-LPC microstate. This could be attributed to existing age effects in controlled functions, as further supported by the replicated age difference in word fluency. The present results add new behavioral and neurophysiological evidence to earlier findings, by showing that automatic semantic retrieval remains stable in global signal strength and topographic distribution during healthy aging.
Resumo:
Despite rapid to-and-fro motion of the retinal image that results from their incessant involuntary eye movements, persons with infantile nystagmus (IN) rarely report the perception of motion smear. We performed two experiments to determine if the reduction of perceived motion smear in persons with IN is associated with an increase in the speed of the temporal impulse response. In Experiment 1, increment thresholds were determined for pairs of successively presented flashes of a long horizontal line, presented on a 65-cd/m2 background field. The stimulus-onset asynchrony (SOA) between the first and second flash varied from 5.9 to 234 ms. In experiment 2, temporal contrast sensitivity functions were determined for a 3-cpd horizontal square-wave grating that underwent counterphase flicker at temporal frequencies between 1 and 40 Hz. Data were obtained for 2 subjects with predominantly pendular IN and 8 normal observers in Experiment 1 and for 3 subjects with IN and 4 normal observers in Experiment 2. Temporal impulse response functions (TIRFs) were estimated as the impulse response of a linear second-order system that provided the best fit to the increment threshold data in Experiment 1 and to the temporal contrast sensitivity functions in Experiment 2. Estimated TIRFs of the subjects with pendular IN have natural temporal frequencies that are significantly faster than those of normal observers (ca. 13 vs. 9 Hz), indicating an accelerated temporal response to visual stimuli. This increase in response speed is too small to account by itself for the virtual absence of perceived motion smear in subjects with IN, and additional neural mechanisms are considered.
Resumo:
Background: Semantic memory processes have been well described in literature. However, the available findings are mostly based on relatively young subjects and concrete word material (e.g. tree). Comparatively little information exists about semantic memory for abstract words (e.g. mind) and possible age related changes in semantic retrieval. In this respect, we developed a paradigm that is useful to investigate the implicit (i.e. attentionindependent) access to concrete and abstract semantic memory. These processes were then compared between young and elderly healthy subjects. Methods: A well established tool for investigating semantic memory processes is the semantic priming paradigm, which consists both of semantically unrelated and related word pairs. In our behavioral task these noun-noun word pairs were further divided into concrete, abstract and matched pronounceable non-word conditions. With this premise, the young and elderly participants performed a lexical decision task: they were asked to press a choice of two buttons as an indication for whether the word pair contained a non-word or not. In order to minimize controlled (i.e. attention-dependent) retrieval strategies, a short stimulus onset asynchrony (SOA) of 150ms was set. Reaction time (RT) changes and accuracy to related and unrelated words (priming effect) in the abstract vs. concrete condition (concreteness effect) were the dependent variables of interest. Results and Discussion: Statistical analysis confirmed both a significant priming effect (i.e. shorter RTs in semantically related compared to unrelated words) and a concreteness effect (i.e. RT decrease for concrete compared to abstract words) in the young and elderly subjects. There was no age difference in accuracy. The only age effect was a commonly known general slowing in RT over all conditions. In conclusion, age is not a critical factor in the implicit access to abstract and concrete semantic memory.
Resumo:
The purpose of this study was to compare the robustness of the event-related potential (ERP) response, called the mismatch negativity (MMN), when elicited by simple tone stimuli (differing in frequency, duration, or intensity) and speech stimuli (CV nonword contrast /de:/ vs. /ge:/ and CV word contrast /deI/ vs. /geI/). The study was conducted using 30 young adult subjects (Groups A and B; n = 15 each). The speech stimuli were presented to Group A at a stimulus onset asynchrony (SOA) of 610 msec and to Group B at an SOA of 900 msec. The tone stimuli were presented to both groups at an SOA of 610 msec. MMN responses were elicited by the simple tone stimuli (66.7%-96.7% of subjects with MMN "present," or significantly different from zero, p < 0.05) but not the speech stimuli (10% subjects with MMN present for nonwords, 10% for words). The length of the SOA (610 msec or 900 msec) had no effect on the ability to obtain consistent MMN responses to the speech stimuli. The results indicated a lack of robust MMN elicited by speech stimuli with fine acoustic contrasts under carefully controlled methodological conditions. The implications of these results are discussed in relation to conflicting reports in the literature of speech-elicited MMNs, and the importance of appropriate methodological design in MMN studies investigating speech processing in normal and pathological populations.
Resumo:
Evidence of abnormalities in the perception of rapidly presented sounds in dyslexia has been interpreted as evidence of a prolonged time window within which sounds can influence the perception of temporally surrounding sounds. We recorded the magnetic mismatch negativity (MMNm) to infrequent tone omissions in a group of six dyslexic adults and six IQ and age-matched controls. An MMNm is only elicited in response to a complete stimulus omission when successive inputs fall within the temporal window of integration (stimulus onset asynchrony (SOA) ∼160 ms). No MMNm responses were recorded in either experimental group when stimuli were presented at SOAs falling just outside the temporal window of integration (SOA = 175 ms). However, while presentation rates of 100 ms resulted in MMNm responses for all control participants, the same stimulus omissions elicited an MMNm response in only one of the six dyslexic participants. These results cannot support the hypothesis of a prolonged time window of integration, but rather indicate auditory grouping deficits in the dyslexic population. © 2006 Elsevier B.V. All rights reserved.
Resumo:
We report results from two experiments assessing distribution of attention and cue use in adults with dyslexia (AwD) and in a group of typically reading controls. Experiment 1 showed normal effects of cueing in AwD, with faster responses when probes were presented within a cued area and normal effects of eccentricity and stimulus onset asynchrony (SOA). In addition, AwD showed stronger benefits of a longer SOA when they had to move attention farther, and stronger effects of inclusion on the left, suggesting that cueing is particularly important in more difficult conditions. Experiment 2 tested the use of cues in a texture detection task involving a wider range of eccentricities and a shorter SOA. In this paradigm, focused attention at the central location is actually detrimental and cueing further reduces performance. Thus, if AwD have a more distributed attention, they should show a reduced performance drop at central locations and, if they do not use cues, they should show less negative effects of cueing. In contrast, AwD showed a larger drop and a positive effect of cueing. These results are better accounted for by a smaller and weaker spotlight of attention. Performance does not decrease at central locations because the attentional spotlight is already deployed with maximum intensity, which cannot be further enhanced at central locations. Instead, use of cueing helps to focus limited resources. Cues orient attention to the right area without enhancing it to the point where this is detrimental for texture detection. Implications for reading are discussed.
Resumo:
Evidence exists that both right and left hemisphere attentional mechanisms are mobilized when attention is directed to the right visual hemifield and only right hemisphere attentional mechanisms are mobilized when attention is directed to the left visual hemifield. This arrangement might lead to a rightward bias of automatic attention. The hypothesis was investigated by testing male volunteers, wherein a ""location discrimination"" reaction time task (Experiments 1 and 3) and a ""location and shape discrimination"" reaction time task (Experiments 2 and 4) were used. Unilateral (Experiments 1 and 2) and unilateral or bilateral (Experiments 3 and 4) peripheral visual prime stimuli were used to control attention. Reaction time to a small visual target stimulus in the same location or in the horizontally opposite location was evaluated. Stimulus onset asynchronies (SOAs) were 34, 50, 67, 83 and 100 ms. An important prime stimulus attentional effect was observed as early as 50 ms in the four experiments. In Experiments 2, 3 and 4, this effect was larger when the prime stimulus occurred in the right hemifield than when it occurred in the left hemifield for SOA 100 ms. In Experiment 4, when the prime stimulus occurred simultaneously in both hemifields, reaction time was faster for the right hemifield and for SOA 100 ms. These results indicate that automatic attention tends to favor the right side of space, particularly when identification of the target stimulus shape is required. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The occurrence of a weak auditory warning stimulus increases the speed of the response to a subsequent visual target stimulus that must be identified. This facilitatory effect has been attributed to the temporal expectancy automatically induced by the warning stimulus. It has not been determined whether this results from a modulation of the stimulus identification process, the response selection process or both. The present study examined these possibilities. A group of 12 young adults performed a reaction time location identification task and another group of 12 young adults performed a reaction time shape identification task. A visual target stimulus was presented 1850 to 2350 ms plus a fixed interval (50, 100, 200, 400, 800, or 1600 ms, depending on the block) after the appearance of a fixation point, on its left or right side, above or below a virtual horizontal line passing through it. In half of the trials, a weak auditory warning stimulus (S1) appeared 50, 100, 200, 400, 800, or 1600 ms (according to the block) before the target stimulus (S2). Twelve trials were run for each condition. The S1 produced a facilitatory effect for the 200, 400, 800, and 1600 ms stimulus onset asynchronies (SOA) in the case of the side stimulus-response (S-R) corresponding condition, and for the 100 and 400 ms SOA in the case of the side S-R non-corresponding condition. Since these two conditions differ mainly by their response selection requirements, it is reasonable to conclude that automatic temporal expectancy influences the response selection process.