998 resultados para Stimulus intensity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a critical role in the formation of declarative memories. Here we show that a computer simulation of simple compartmental cells organized with basic hippocampal connectivity is capable of producing stimulus intensity sensitive wide-band fluctuations of spectral power similar to that seen in real EEG. While previous computational models have been designed to assess the viability of the putative mechanisms of memory storage and retrieval, they have generally been too abstract to allow comparison with empirical data. Furthermore, while the anatomical connectivity and organization of the hippocampus is well defined, many questions regarding the mechanisms that mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the specifics of changing synaptic weights and more on the population dynamics. Spectral power in four distinct frequency bands were derived from simulated field potentials of the computational model and found to depend on the intensity of a random input. The majority of power occurred in the lowest frequency band (3-6 Hz) and was greatest to the lowest intensity stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7-45 Hz show an increase in power directly related with an increase in stimulus intensity. This trend continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls dramatically. These results suggest that the relative power of intrinsic network oscillations are dependent upon the level of activation and that above threshold levels all frequencies are damped, perhaps due to over activation of inhibitory interneurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multisensory stimuli can improve performance, facilitating RTs on sensorimotor tasks. This benefit is referred to as the redundant signals effect (RSE) and can exceed predictions on the basis of probability summation, indicative of integrative processes. Although an RSE exceeding probability summation has been repeatedly observed in humans and nonprimate animals, there are scant and inconsistent data from nonhuman primates performing similar protocols. Rather, existing paradigms have instead focused on saccadic eye movements. Moreover, the extant results in monkeys leave unresolved how stimulus synchronicity and intensity impact performance. Two trained monkeys performed a simple detection task involving arm movements to auditory, visual, or synchronous auditory-visual multisensory pairs. RSEs in excess of predictions on the basis of probability summation were observed and thus forcibly follow from neural response interactions. Parametric variation of auditory stimulus intensity revealed that in both animals, RT facilitation was limited to situations where the auditory stimulus intensity was below or up to 20 dB above perceptual threshold, despite the visual stimulus always being suprathreshold. No RT facilitation or even behavioral costs were obtained with auditory intensities 30-40 dB above threshold. The present study demonstrates the feasibility and the suitability of behaving monkeys for investigating links between psychophysical and neurophysiologic instantiations of multisensory interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical auditory evoked potentials were recorded in cochlear implant recipients and in individuals with normal hearing using a speech stimulus. Responses were acquired over two test sessions to investigate between group differences and test repeatability. Results indicate significant differences in N1-P2 latency and amplitude measures between cochlear implant recipients and individuals with normal hearing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prepulse inhibition of the blink reflex is widely applied to investigate information processing deficits in schizophrenia and other psychiatric patient groups. The present experiment investigated the hypothesis that prepulse inhibition reflects a transient process that protects preattentive processing of the prepulse. Participants were presented with pairs of blinkeliciting noises, some preceded by a prepulse at a variable stimulus onset asynchrony (SOA), and were asked to rate the intensity of the second noise relative to the first. Inhibition of blink amplitude was greater for a 110-dB (A) noise than for a 95-dB(A) noise with a 120-ms SOA, whereas there was no difference with a 30-ms SOA. The perceived intensity was also lower for the 110-dB(A) noise than for the 95-dB(A) noise with the 120-ms SOA, but not with the 30-ms SOA. The parallel results support a relationship between prepulse inhibition of response amplitude and perceived intensity. However, the prepulse did not reduce intensity ratings relative to control trials in some conditions, suggesting that prepulse inhibition is not always associated with an attenuation of the perceived impact of the blink-eliciting stimulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma oscillations have previously been linked to pain perception and it has been hypothesised that they may have a potential role in encoding pain intensity. Stimulus response experiments have reported an increase in activity in the primary somatosensory cortex (SI) with increasing stimulus intensity, but the specific role of oscillatory dynamics in this change in activation remains unclear. In this study, Magnetoencephalography (MEG) was used to investigate the changes in cortical oscillations during 4 different intensities of a train of electrical stimuli to the right index finger, ranging from low sensation to strong pain. In those participants showing changes in evoked oscillatory gamma in SI during stimulation, the strength of the gamma power was found to increase with increasing stimulus intensity at both pain and sub-pain thresholds. These results suggest that evoked gamma oscillations in SI are not specific to pain but may have a role in encoding somatosensory stimulus intensity. © 2013 Rossiter, Worthen, Witton, Hall and Furlong.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of visual stimuli intensity on manual reaction time (RT) was investigated under two different attentional settings: high (Experiment 1) and low (Experiment 2) stimulus location predictability. These two experiments were also run under both binocular and monocular viewing conditions. We observed that RT decreased as stimulus intensity increased. It also decreased as the viewing condition was changed from monocular to binocular as well as the location predictability shifted from low to high. A significant interaction was found between stimulus intensity and viewing condition, but no interaction was observed between neither of these factors and location predictability. These findings support the idea that the stimulus intensity effect arises from purely sensory, pre-attentive mechanisms rather than deriving from more efficient attentional capture. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study tested the adequacy of feeding as an unconditioned stimulus (US) to condition an endocrine response (plasma cortisol increase) in the cichlid fish Nile tilapia (Oreochromis niloticus). In a first study, conditioning was confirmed in grouped fish in the only experiment using single-held Nile tilapia. In this test a conditioned stimulus (CS - aeration off) was associated with a stressor (air emersion for 2 min - US). We then assessed whether several events of paired CS-US resulted in a conditioned endocrine response (CR), in this case an increase in plasma cortisol after presentation of the CS only. Before testing feeding as US, the postprandial or social holding condition for feeding effects on cortisol levels was tested. Nile tilapia showed increased cortisol after feeding associated to social context (grouped fish), but not to food only (single-held fish). In a third study, feeding was tested as US in an experiment similar to the first study but an increase in feeding-induced cortisol could not be conditioned. The absence of CR suggests that the stressor affects acquisition of this response, which may be a consequence of stimulus intensity or biological relevance. This study expands the recently reported Pavlovian conditioning paradigm for endocrine response in fish. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The blink reflex is modulated if a weak lead stimulus precedes the blink-eliciting stimulus. In two experiments, we examined the effects of the sensory modality of the lead and blink-eliciting stimuli on blink modulation. Acoustic, visual, or tactile lead stimuli were followed by an acoustic (Experiment 1) or an electrotactile (Experiment 2) blink-eliciting stimulus at lead intervals of -30, 0, 30, 60, 120, 240, 360, and 4,500 msec. The inhibition of blink magnitude at the short (60- to 360-msec) lead intervals and the facilitation of blink magnitude at the long (4,500-msec) lead interval observed for each lead stimulus modality was relatively unaffected by the blink-eliciting stimulus modality. The facilitation of blink magnitude at the very short (-30- to 30-msec) lead intervals was dependent on the combination of the lead and the blink-eliciting stimulus modalities. Modality specific and nonspecific processes operate at different levels of perceptual processing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 mu Vms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expectations about the magnitude of impending pain exert a substantial effect on subsequent perception. However, the neural mechanisms that underlie the predictive processes that modulate pain are poorly understood. In a combined behavioral and high-density electrophysiological study we measured anticipatory neural responses to heat stimuli to determine how predictions of pain intensity, and certainty about those predictions, modulate brain activity and subjective pain ratings. Prior to receiving randomized laser heat stimuli at different intensities (low, medium or high) subjects (n=15) viewed cues that either accurately informed them of forthcoming intensity (certain expectation) or not (uncertain expectation). Pain ratings were biased towards prior expectations of either high or low intensity. Anticipatory neural responses increased with expectations of painful vs. non-painful heat intensity, suggesting the presence of neural responses that represent predicted heat stimulus intensity. These anticipatory responses also correlated with the amplitude of the Laser-Evoked Potential (LEP) response to painful stimuli when the intensity was predictable. Source analysis (LORETA) revealed that uncertainty about expected heat intensity involves an anticipatory cortical network commonly associated with attention (left dorsolateral prefrontal, posterior cingulate and bilateral inferior parietal cortices). Relative certainty, however, involves cortical areas previously associated with semantic and prospective memory (left inferior frontal and inferior temporal cortex, and right anterior prefrontal cortex). This suggests that biasing of pain reports and LEPs by expectation involves temporally precise activity in specific cortical networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To review the experience at a single institution with motor evoked potential (MEP) monitoring during intracranial aneurysm surgery to determine the incidence of unacceptable movement. METHODS: Neurophysiology event logs and anesthetic records from 220 craniotomies for aneurysm clipping were reviewed for unacceptable patient movement or reason for cessation of MEPs. Muscle relaxants were not given after intubation. Transcranial MEPs were recorded from bilateral abductor hallucis and abductor pollicis muscles. MEP stimulus intensity was increased up to 500 V until evoked potential responses were detectable. RESULTS: Out of 220 patients, 7 (3.2%) exhibited unacceptable movement with MEP stimulation-2 had nociception-induced movement and 5 had excessive field movement. In all but one case, MEP monitoring could be resumed, yielding a 99.5% monitoring rate. CONCLUSIONS: With the anesthetic and monitoring regimen, the authors were able to record MEPs of the upper and lower extremities in all patients and found only 3.2% demonstrated unacceptable movement. With a suitable anesthetic technique, MEP monitoring in the upper and lower extremities appears to be feasible in most patients and should not be withheld because of concern for movement during neurovascular surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

‘Temporally urgent’ reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CONSUMERS SENSORY EVALUATION OF MELON SWEETNESS AND QUALITY Agulheiro Santos, A.C, Rato, A.E., Laranjo, M. and Gonçalves, C. Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Polo da Mitra, Ap.94, 7002-554 Évora, Portugal. ABSTRACT The sensory quality of fruits is made of a range of attributes like sweetness, acidity, aroma, firmness, color. Taste perception and perception threshold of these attributes are variable according to the psychological and cultural development of individuals. To better understand the quality evaluation of melon by consumers, consumers were invited to taste melon samples, in supermarkets in Évora (South region), Lisbon (Central region) and Vila Nova de Gaia (North region). The present work explored the importance given by consumers to sweetness in order to classify the overall quality of melon. Furthermore, the relationship of the chemical evaluation of Total Soluble Solids (TSS) with sweetness of melon was studied. Fruits from the variety Melão branco picked randomly from those that were exposed for sale in supermarkets were used for analysis. Fruits were chinned along the equatorial zone and only the central part of the fruit, opposite to the part that leaned on the soil, was used to obtain homogeneous samples. Consumers were invited to taste four small pieces of each fruit, previously referenced with a code number, and answer a questionnaire with two questions related to sweetness and overall quality. Each question had five possible levels, identified from “Nothing sweet”, to “Extremely sweet”, in one case, and from “Poor” to “Excellent” in the other. Simultaneously, the values of TSS (measured in ºBrix) for each melon used in the study were evaluated by refractometry. This sensory analysis allowed us to point out the following findings: first of all, there is good agreement between the results obtained to classify “Sweetness” and “Overall Quality” (Cohen’s Kappa=53.1%, p<0.001), which means, for example, that fruits with excellent quality are in general extremely sweet. Moreover, fruits with less than 9.6 °Brix are considered of poor quality and nothing sweet, whereas fruits with values between 10 °Brix and 12 °Brix are considered good in terms of overall quality. It seems that the thresholds for the stimulus/intensity of sweetness lied between 10 °Brix to 14 °Brix for this melon variety. Acknowledgments This work was support by national funds through Fundação para a Ciência e a Tecnologia (FCT) under the Strategic Project Pest-OE/AGR/UI0115/2014 and co-funded by FEDER funds through the COMPETE Program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whiplash injuries are common yet enigmatic to substantiate clinically. Trigeminal somatosensory evoked potentials (TSEPs) were posited as an indicator of trigeminal nerve conduction damage resulting from whiplash. Alternating polarity square-wave current stimuli were applied transcutaneously in the facial region. 379 recorded pilot trials from 27 participants (8 male and 19 female) were utilized to develop a non-invasive recording capability for TSEPs. Stimulus intensity and artifact, cortical recording sites, stimulation electrode design and placement were explored. Statistically significant differences in amplitude of TSEP waveform components at 13, 19 and 27 ms between uninjured and whiplashed participants were noted. Increased stimulus intensity in whiplashed participants was observed to increase TSEP amplitude. The present methodology and hardware are discussed and directions for future advancement of the current process are outlined.