1000 resultados para Stickiness Temperature
Resumo:
The cyclone stickiness test (CST) technique was applied to measure the stickiness temperature and relative humidity of whey, honey, and apple juice powders. A moisture sorption isotherm study was conducted to analyze the surface moisture content of whey powder. The glass transition temperatures of the sample powder were analyzed using differential scanning calorimetry (DSC). The stickiness results of these products were found within 20 degrees C above their surface glass transition temperatures, which is well within the normal temperature range for glass transition in general. The results obtained by the CST technique were found consistent with DSC values.
Resumo:
The development of surface stickiness of droplets of sugar and acid-rich foods during spray drying can be explained using the notion of glass transition temperature (T-g). In this work, criteria for a safe drying regime have been developed and their physical basis provided. A dimensionless time (psi) is introduced as an indicator of spray dryability and it is correlated with the recovery of powders in practical spray drying. Droplets with initial diameters of 120 mum were subjected to simulated spray drying conditions and their safe drying regime and 41 values generated. The model predicted the recovery in a pilot scale spray dryer reasonably well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The number of drug substances in formulation development in the pharmaceutical industry is increasing. Some of these are amorphous drugs and have glass transition below ambient temperature, and thus they are usually difficult to formulate and handle. One reason for this is the reduced viscosity, related to the stickiness of the drug, that makes them complicated to handle in unit operations. Thus, the aim in this thesis was to develop a new processing method for a sticky amorphous model material. Furthermore, model materials were characterised before and after formulation, using several characterisation methods, to understand more precisely the prerequisites for physical stability of amorphous state against crystallisation. The model materials used were monoclinic paracetamol and citric acid anhydrate. Amorphous materials were prepared by melt quenching or by ethanol evaporation methods. The melt blends were found to have slightly higher viscosity than the ethanol evaporated materials. However, melt produced materials crystallised more easily upon consecutive shearing than ethanol evaporated materials. The only material that did not crystallise during shearing was a 50/50 (w/w, %) blend regardless of the preparation method and it was physically stable at least two years in dry conditions. Shearing at varying temperatures was established to measure the physical stability of amorphous materials in processing and storage conditions. The actual physical stability of the blends was better than the pure amorphous materials at ambient temperature. Molecular mobility was not related to the physical stability of the amorphous blends, observed as crystallisation. Molecular mobility of the 50/50 blend derived from a spectral linewidth as a function of temperature using solid state NMR correlated better with the molecular mobility derived from a rheometer than that of differential scanning calorimetry data. Based on the results obtained, the effect of molecular interactions, thermodynamic driving force and miscibility of the blends are discussed as the key factors to stabilise the blends. The stickiness was found to be affected glass transition and viscosity. Ultrasound extrusion and cutting were successfully tested to increase the processability of sticky material. Furthermore, it was found to be possible to process the physically stable 50/50 blend in a supercooled liquid state instead of a glassy state. The method was not found to accelerate the crystallisation. This may open up new possibilities to process amorphous materials that are otherwise impossible to manufacture into solid dosage forms.
Resumo:
The importance of sticky behaviour of amorphous food powders has been recognized over many decades in the food industry due to its influence on process and handling abilities and quality of the powders. This paper emphasizes the role of stickiness in the food powder industry as well as reviews the stickiness characterization techniques developed to date. This paper also attempts to correlate the stickiness behaviour of food powders to the instrumental analysis such as glass transition temperature. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The effect of addition of maltodextrin on drying kinetics of drops containing fructose, glucose, sucrose and citric acid individually and in mixtures was studied experimentally using single drop drying experiments and numerically by solving appropriate mass and heat transfer equations. The numerical predictions agreed with the experimental moisture and temperature histories within 5-6% average relative (absolute) errors and average differences of +/- 1degreesC, respectively. The stickiness of these drops was determined using the glass transition temperature (T-g) of the drops' surface layer as an indicator. The experimental stickiness histories followed the model predictions with reasonable accuracy. A safe drying (non-sticky) regime in a spray drying environment has been proposed, and used to estimate the optimum amount of addition of maltodextrin for successful spray drying of 120 micron diameter droplets of fruit juices. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Stickiness behavior of skim milk powder was investigated based on the mechanical property of the material during the glass-rubber transition. A thermally controlled device was developed for the static mechanical test. This device was attached to a texture analyzer, and skim milk powder, which was used as a model sample, was tested for its glass-rubber transition temperature (Tg-r) using static compression technique (creep test). Changes in compression probe distance as a function of temperature were recorded. Tg-r was determined, in the region where changes in the probe distance were observed, by using linear regression technique. The effect of sample quantity, compression force, and heating rate on the determination of Tg-r was investigated. All these parameters significantly influenced the Tg-r determination (p < 0.05). The Tg-r of skim milk powder measured by this novel technique was found closely correlated to its glass transition temperature (T-g) measured by DSC.
Resumo:
A steady state mathematical model for co-current spray drying was developed for sugar-rich foods with the application of the glass transition temperature concept. Maltodextrin-sucrose solution was used as a sugar-rich food model. The model included mass, heat and momentum balances for a single droplet drying as well as temperature and humidity profile of the drying medium. A log-normal volume distribution of the droplets was generated at the exit of the rotary atomizer. This generation created a certain number of bins to form a system of non-linear first-order differential equations as a function of the axial distance of the drying chamber. The model was used to calculate the changes of droplet diameter, density, temperature, moisture content and velocity in association with the change of air properties along the axial distance. The difference between the outlet air temperature and the glass transition temperature of the final products (AT) was considered as an indicator of stickiness of the particles in spray drying process. The calculated and experimental AT values were close, indicating successful validation of the model. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.