980 resultados para Stick Insect


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural selection can drive the repeated evolution of reproductive isolation, but the genomic basis of parallel speciation remains poorly understood. We analyzed whole-genome divergence between replicate pairs of stick insect populations that are adapted to different host plants and undergoing parallel speciation. We found thousands of modest-sized genomic regions of accentuated divergence between populations, most of which are unique to individual population pairs. We also detected parallel genomic divergence across population pairs involving an excess of coding genes with specific molecular functions. Regions of parallel genomic divergence in nature exhibited exceptional allele frequency changes between hosts in a field transplant experiment. The results advance understanding of biological diversification by providing convergent observational and experimental evidence for selection's role in driving repeatable genomic divergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interplay between selection and aspects of the genetic architecture of traits (such as linkage, dominance, and epistasis) can either drive or constrain speciation [1-3]. Despite accumulating evidence that speciation can progress to "intermediate" stages-with populations evolving only partial reproductive isolation-studies describing selective mechanisms that impose constraints on speciation are more rare than those describing drivers. The stick insect Timema cristinae provides an example of a system in which partial reproductive isolation has evolved between populations adapted to different host plant environments, in part due to divergent selection acting on a pattern polymorphism [4, 5]. Here, we demonstrate how selection on a green/melanistic color polymorphism counteracts speciation in this system. Specifically, divergent selection between hosts does not occur on color phenotypes because melanistic T. cristinae are cryptic on the stems of both host species, are resistant to a fungal pathogen, and have a mating advantage. Using genetic crosses and genome-wide association mapping, we quantify the genetic architecture of both the pattern and color polymorphism, illustrating their simple genetic control. We use these empirical results to develop an individual-based model that shows how the melanistic phenotype acts as a "genetic bridge" that increases gene flow between populations living on different hosts. Our results demonstrate how variation in the nature of selection acting on traits, and aspects of trait genetic architecture, can impose constraints on both local adaptation and speciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Clear examples of ecological speciation exist, often involving divergence in trophic morphology. However, substantial variation also exists in how far the ecological speciation process proceeds, potentially linked to the number of ecological axes, traits, or genes subject to divergent selection. In addition, recent studies highlight how differentiation might occur between the sexes, rather than between populations. We examine variation in trophic morphology in two host-plant ecotypes of walking-stick insects (Timema cristinae), known to have diverged in morphological traits related to crypsis and predator avoidance, and to have reached an intermediate point in the ecological speciation process. Here we test how host plant use, sex, and rearing environment affect variation in trophic morphology in this species using traditional multivariate, novel kernel density based and Bayesian morphometric analyses. Results: Contrary to expectations, we find limited host-associated divergence in mandible shape. Instead, the main predictor of shape variation is sex, with secondary roles of population of origin and rearing environment. Conclusion: Our results show that trophic morphology does not strongly contribute to host-adapted ecotype divergence in T. cristinae and that traits can respond to complex selection regimes by diverging along different intraspecific lines, thereby impeding progress toward speciation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Asexuality is rare in animals in spite of its apparent advantage relative to sexual reproduction, indicating that it must be associated with profound costs [1-9]. One expectation is that reproductive advantages gained by new asexual lineages will be quickly eroded over time [3, 5-7]. Ancient asexual taxa that have evolved and adapted without sex would be "scandalous" exceptions to this rule, but it is often difficult to exclude the possibility that putative asexuals deploy some form of "cryptic" sex, or have abandoned sex more recently than estimated from divergence times to sexual relatives [10]. Here we provide evidence, from high intraspecific divergence of mitochondrial sequence and nuclear allele divergence patterns, that several independently derived Timema stick-insect lineages have persisted without recombination for more than a million generations. Nuclear alleles in the asexual lineages displayed significantly higher intraindividual divergences than in related sexual species. In addition, within two asexuals, nuclear allele phylogenies suggested the presence of two clades, with sequences from the same individual appearing in both clades. These data strongly support ancient asexuality in Timema and validate the genus as an exceptional opportunity to attack the question of how asexual reproduction can be maintained over long periods of evolutionary time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adrogenesis, development from paternal but not maternal chromosomes, can be induced to occur in some organisms, including vertebrates, but has only been reported to occur naturally in interspecific hybrids of the Sicilian stick insect. Androgenesis has not been described previously in Drosophila. We now report the recovery of androgenetic offspring from Drosophila melanogaster females mutant for a gene that affects an oocyte- and embryo-specific alpha-tubulin. The androgenetic exceptions are X,X diploid females that develop from haploid embryos and express paternal markers on all 4 chromosomes. The exceptional females arise by fusion of haploid cleavage nuclei or failure of newly replicated haploid chromosomes to segregate, rather than fusion of two inseminating sperm. The frequency of androgenetic offspring is greatly enhanced by a partial loss-of-function mutant of the NCD (nonclaret disjunctional) microtubule motor protein, suggesting that wild-type NCD functions is pronuclear fusion. Diploidization of haploid paternal chromosome complements results in complete genetic homozygosity, which could facilitate studies of gene variation and mutational load in populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Australian and zone harbours a surprising number of parthenogenetic organisms. including the well known case of the grasshopper Warramaba virgo. Less well known is the case of the stick insects of the Sipyloidea complex, which. despite its presence in the literature for over 15 years. has gone entirely unnoticed by workers in the field. We draw attention to the remarkable similarities between the evolution of parthenogenesis in Warramaba and Sipyloidea and analyse the geographic distributions of parthenogenetic and sexual forms with respect to six Climatic variables. We provide evidence that a combination of Climatic and vegetative barriers are responsible for the current distribution patterns in these taxa. Comparisons are also made with patterns of geographic parthenogenesis in lizards of the Heteronotia binoei complex. In general. there has been a strong tendency for parthenogenesis to originate via hybridization in the western part of the and zone with subsequent eastward spread throughout mulga woodlands and mallee shrublands where rainfall is both low and aseasonal. We propose that the hybridization events leading to parthenogenesis in these diverse taxa were driven by a common biogeographic process - that is, by range shifts associated with changes in aridity during the late Pleistocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sexual reproduction is extremely widespread in spite of its presumed costs relative to asexual reproduction, indicating that it must provide significant advantages. One postulated benefit of sex and recombination is that they facilitate the purging of mildly deleterious mutations, which would accumulate in asexual lineages and contribute to their short evolutionary life span. To test this prediction, we estimated the accumulation rate of coding (nonsynonymous) mutations, which are expected to be deleterious, in parts of one mitochondrial (COI) and two nuclear (Actin and Hsp70) genes in six independently derived asexual lineages and related sexual species of Timema stick insects. We found signatures of increased coding mutation accumulation in all six asexual Timema and for each of the three analyzed genes, with 3.6- to 13.4-fold higher rates in the asexuals as compared with the sexuals. In addition, because coding mutations in the asexuals often resulted in considerable hydrophobicity changes at the concerned amino acid positions, coding mutations in the asexuals are likely associated with more strongly deleterious effects than in the sexuals. Our results demonstrate that deleterious mutation accumulation can differentially affect sexual and asexual lineages and support the idea that deleterious mutation accumulation plays an important role in limiting the long-term persistence of all-female lineages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The moss Tayloria dubyi (Splachnaceae) is endemic to the subantarctic Magallanes ecoregion where it grows exclusively on bird dung and perhaps only on feces of the goose Chloephaga picta, a unique habitat among Splachnaceae. Some species of Splachnaceae from the Northern Hemisphere are known to recruit coprophilous flies as a vector to disperse their spores by releasing intense odors mimicking fresh clung or decaying corpses. The flies land on the capsule, and may get in contact with the protruding mass of spores that stick to the insect body. The dispersal strategy relies on the spores falling off when the insect reaches fresh droppings or carrion. Germination is thought to be rapid and a new population is quickly established over the entire substrate. The objectives of this investigation were to determine whether the coprophilous T. dubyi attracts flies and to assess the taxonomic diversity of the flies visiting this moss. For this, fly traps were set up above mature sporophyte bearing populations in two peatlands on Navarino Island. We captured 64 flies belonging to the Muscidae (Palpibracus chilensis), Tachinidae (Dasyuromyia sp) and Sarcophagidae (not identified to species) above sporophytes of T. dubyi, whereas no flies were captured in control traps set up above Sphagnum mats nearby.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piperaceae species have been placed among the basal angiosperm and are adapted to a variety of habitats including moist forests, secondary vegetation and dry high lands. The major anatomical/morphology features are of small trees, vines, and shrubs for Piper species, while the epiphytic and succulent characteristics are predominant forms among Peperomia species. Their secondary chemistry can be mostly represented by amides, phenylpropanoids/lignoids, and chromenes in addition to a phletoria of biosynthetically mixed-origin secondary compounds. Although several amides and lignans are known as insecticides, several phytophagous insects, among which some considered pests of economic importance, have been observed feeding vigorously on Piperaceae species. Herein we describe the feeding preferences of fourteen phytophagous species of Coleoptera, Lepidoptera and Hemiptera over approximately fifty Piperaceae species observed in São Paulo, SP, Brazil, in a long-term basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Antigens for Hantavirus serological tests have been produced using DNA recombinant technology for more than twenty years. Several different strategies have been used for that purpose. All of them avoid the risks and difficulties involved in multiplying Hantavirus in the laboratory. In Brazil, the Araraquara virus is one of the main causes of Hantavirus Cardio-Pulmonary Syndrome (HCPS). Methods: In this investigation, we report the expression of the N protein of the Araraquara Hantavirus in a Baculovirus Expression System, the use of this protein in IgM and IgG ELISA and comparison with the same antigen generated in E. coli. Results: The protein obtained, and purified in a nickel column, was effectively recognized by antibodies from confirmed HCPS patients. Comparison of the baculovirus generated antigen with the N protein produced in E. coli showed that both were equally effective in terms of sensitivity and specificity. Conclusions: Our results therefore indicate that either of these proteins can be used in serological tests in Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent fears of terrorism have provoked an increase in delays and denials of transboundary shipments of radioisotopes. This represents a serious constraint to sterile insect technique (SIT) programs around the world as they rely on the use of ionizing radiation from radioisotopes for insect sterilization. To validate a novel X ray irradiator, a series of studies on Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) were carried out, comparing the relative biological effectiveness (RBE) between X rays and traditional gamma radiation from (60)Co. Male C. capitata pupae and pupae of both sexes of A. fraterculus, both 24 - 48 h before adult emergence, were irradiated with doses ranging from 15 to 120 Gy and 10-70 Gy, respectively. Estimated mean doses of 91.2 Gy of X and 124.9 Gy of gamma radiation induced 99% sterility in C. capitata males, Irradiated A. fraterculus were 99% sterile at approximate to 40-60 Gy for both radiation treatments. Standard quality control parameters and mating indices were not significantly affected by the two types of radiation. The RBE did not differ significantly between the tested X and gamma radiation, and X rays are as biologically effective for SIT purposes as gamma rays are. This work confirms the suitability of this new generation of X ray irradiators for pest control programs that integrate the SIT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Citrus sudden death (CSD) transmission was studied by graft-inoculation and under natural conditions. Young sweet orange trees on Rangpur rootstock were used as indicator plants. They were examined regularly for one or two characteristic markers of CSD: (i) presence of a yellow-stained layer of thickened bark on the Rangpur rootstock, and (ii) infection with the CSD-associated marafivirus. Based on these two markers, transmission of CSD was obtained, not only when budwood for graft-inoculation was taken from symptomatic, sweet orange trees on Rangpur, but also when the budwood sources were asymptomatic sweet orange trees on Cleopatra mandarin, indicating that the latter trees are symptomless carriers of the CSD agent. For natural transmission, 80 young indicator plants were planted within a citrus plot severely affected by CSD. Individual insect-proof cages were built around 40 indicator plants, and the other 40 indicator plants remained uncaged. Only two of the 40 caged indicator plants were affected by CSD, whereas 17 uncaged indicator plants showed CSD symptoms and were infected with the marafivirus. An additional 12 uncaged indicator plants became severely affected with citrus variegated chlorosis and were removed. These results strongly suggest that under natural conditions, CSD is transmitted by an aerial vector, such as an insect, and that the cages protected the trees against infection by the vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age is a critical determinant of the ability of most arthropod vectors to transmit a range of human pathogens. This is due to the fact that most pathogens require a period of extrinsic incubation in the arthropod host before pathogen transmission can occur. This developmental period for the pathogen often comprises a significant proportion of the expected lifespan of the vector. As such, only a small proportion of the population that is oldest contributes to pathogen transmission. Given this, strategies that target vector age would be expected to obtain the most significant reductions in the capacity of a vector population to transmit disease. The recent identification of biological agents that shorten vector lifespan, such as Wolbachia, entomopathogenic fungi and densoviruses, offer new tools for the control of vector-borne diseases. Evaluation of the efficacy of these strategies under field conditions will be possible due to recent advances in insect age-grading techniques. Implementation of all of these strategies will require extensive field evaluation and consideration of the selective pressures that reductions in vector longevity may induce on both vector and pathogen.