999 resultados para Sterol Synthesis
Resumo:
Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas's disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.
Resumo:
The dwarf pea (Pisum sativum) mutants lka and lkb are brassinosteroid (BR) insensitive and deficient, respectively. The dwarf phenotype of the lkb mutant was rescued to wild type by exogenous application of brassinolide and its biosynthetic precursors. Gas chromatography-mass spectrometry analysis of the endogenous sterols in this mutant revealed that it accumulates 24-methylenecholesterol and isofucosterol but is deficient in their hydrogenated products, campesterol and sitosterol. Feeding experiments using 2H-labeled 24-methylenecholesterol indicated that the lkb mutant is unable to isomerize and/or reduce the Δ24(28) double bond. Dwarfism of the lkb mutant is, therefore, due to BR deficiency caused by blocked synthesis of campesterol from 24-methylenecholesterol. The lkb mutation also disrupted sterol composition of the membranes, which, in contrast to those of the wild type, contained isofucosterol as the major sterol and lacked stigmasterol. The lka mutant was not BR deficient, because it accumulated castasterone. Like some gibberellin-insensitive dwarf mutants, overproduction of castasterone in the lka mutant may be ascribed to the lack of a feedback control mechanism due to impaired perception/signal transduction of BRs. The possibility that castasterone is a biologically active BR is discussed.
Resumo:
Tese de Doutoramento em Biologia Ambiental e Molecular
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Ketoconazole an azole antifungic drug which is already in the market has also been demonstrated to be active against Trypanossoma cruzi experimental infections. In this paper we confirmed the drug effect and investigated its range of activity against different T. cruzi strains naturally resistant or susceptible to both standard drugs Nifurtimox and Benznidazole used clinically in Chagas disease. Moreover, we have shown that the association of Ketoconazole plus Lovastatin (an inhibitor of sterol synthesis), which has an antiproliferative effect against T. cruzi in vitro, failed to enhance the supressive effect of Ketoconazole displayed when administered alone to infected mice. Finally, administration in chronic chagasic patients of Ketoconazole at doses used in the treatment of deep mycosis also failed to induce cure as demonstrated by parasitological and serological tests. The strategy of identify and test drugs which are already in the market and fortuitously are active against T. cruzi has been discussed.
Resumo:
The pathogenesis and evolutive pattern of Chagas disease suggests that the chronic phase should be more widely treated in order to (i) eliminate Trypanosoma cruzi and prevent new inflammatory foci and the extension of tissue lesions, (ii) promote tissue regeneration to prevent fibrosis, (iii) reverse existing fibrosis, (iv) prevent cardiomyopathy, megaoesophagus and megacolon and (v) reduce or eliminate cardiac block and arrhythmia. All cases of the indeterminate chronic form of Chagas disease without contraindications due to other concomitant diseases or pregnancy should be treated and not only cases involving children or recently infected cases. Patients with chronic Chagas cardiomyopathy grade II of the New York Heart Association classification should be treated with specific chemotherapy and grade III can be treated according to medical-patient decisions. We are proposing the following new strategies for chemotherapeutic treatment of the chronic phase of Chagas disease: (i) repeated short-term treatments for 30 consecutive days and interval of 30-60 days for six months to one year and (ii) combinations of drugs with different mechanisms of action, such as benznidazole + nifurtimox, benznidazole or nifurtimox + allopurinol or triazole antifungal agents, inhibition of sterol synthesis.
Resumo:
Glycosomes are peroxisome-related organelles found in all kinetoplastid protists, including the human pathogenic species of the family Trypanosomatidae: Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. Glycosomes are unique in containing the majority of the glycolytic/gluconeogenic enzymes, but they also possess enzymes of several other important catabolic and anabolic pathways. The different metabolic processes are connected by shared co-factors and some metabolic intermediates, and their relative importance differs between the parasites or their distinct life-cycle stages, dependent on the environmental conditions encountered. By genetic or chemical means, a variety of glycosomal enzymes participating in different processes have been validated as drug targets. For several of these enzymes, as well as others that are likely crucial for proliferation, viability or virulence of the parasites, inhibitors have been obtained by different approaches such as compound libraries screening or design and synthesis. The efficacy and selectivity of some initially obtained inhibitors of parasite enzymes were further optimized by structure-activity relationship analysis, using available protein crystal structures. Several of the inhibitors cause growth inhibition of the clinically relevant stages of one or more parasitic trypanosomatid species and in some cases exert therapeutic effects in infected animals. The integrity of glycosomes and proper compartmentalization of at least several matrix enzymes is also crucial for the viability of the parasites. Therefore, proteins involved in the assembly of the organelles and transmembrane passage of substrates and products of glycosomal metabolism offer also promise as drug targets. Natural products with trypanocidal activity by affecting glycosomal integrity have been reported.
Resumo:
Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite enantioselectivity for benzomorphans and different molecular masses, two subtypes are differentiated. We purified the sigma1-binding site as a single 30-kDa protein from guinea pig liver employing the benzomorphan(+)[3H]pentazocine and the arylazide (-)[3H]azidopamil as specific probes. The purified (+)[3H]pentazocine-binding protein retained its high affinity for haloperidol, pentazocine, and ditolylguanidine. Partial amino acid sequence obtained after trypsinolysis revealed no homology to known proteins. Radiation inactivation of the pentazocine-labeled sigma1-binding site yielded a molecular mass of 24 +/- 2 kDa. The corresponding cDNA was cloned using degenerate oligonucleotides and cDNA library screening. Its open reading frame encoded a 25.3-kDa protein with at least one putative transmembrane segment. The protein expressed in yeast cells transformed with the cDNA showed the pharmacological characteristics of the brain and liver sigma1-binding site. The deduced amino acid sequence was structurally unrelated to known mammalian proteins but it shared homology with fungal proteins involved in sterol synthesis. Northern blots showed high densities of the sigma1-binding site mRNA in sterol-producing tissues. This is also in agreement with the known ability of sigma1-binding sites to interact with steroids, such as progesterone.
Resumo:
Cholesterol is a major component of atherosclerotic plaques. Cholesterol accumulation within the arterial intima and atherosclerotic plaques is determined by the difference of cellular cholesterol synthesis and/or influx from apo B-containing lipoproteins and cholesterol efflux. In humans, apo A-I Milano infusion has led to rapid regression of atherosclerosis in coronary arteries. We hypothesised that a multifunctional plasma delipidation process (PDP) would lead to rapid regression of experimental atherosclerosis and probably impact on adipose tissue lipids. In hyperlipidemic animals, the plasma concentrations of cholesterol, triglyceride and phospholipid were, respectively, 6-, 157-, and 18-fold higher than control animals, which consequently resulted in atherosclerosis. PDP consisted of delipidation of plasma with a mixture of butanol-diisopropyl ether (DIPE). PDP removed considerably more lipid from the hyperlipidemic animals than in normolipidemic animals. PDP treatment of hyperlipidemic animals markedly reduced intensity of lipid staining materials in the arterial wall and led to dramatic reduction of lipid in the adipose tissue. Five PDP treatments increased apolipoprotein A1 concentrations in all animals. Biochemical and hematological parameters were unaffected during PDP treatment. These results show that five PDP treatments led to marked reduction in avian atherosclerosis and removal of lipid from adipose tissue. PDP is a highly effective method for rapid regression of atherosclerosis.
Resumo:
Fungi are ubiquitous organisms in nature and can be found in association with healthy eyes. The incidence of actual fungal infection of the eye, however, is relatively low compared with that attributable to viruses and bacteria. Nevertheless, fungal infection of the eye is increasing especially in immuno-compromised patients and a wide variety of fungal infections have now been described worldwide with species of Fusarium, Aspergillus, Candida, and dematiaceous fungi predominating. At present there are a limited number of compounds available to control ocular mycoses while resistance to anti-fungal agents has been growing in recent years, especially to azoles. Several mechanisms of resistance have been identified including modification of sterol synthesis pathways by the fungus, modification of enzymes to reduce the binding of azoles to fungal components and increased efficiency of removal of the azole within fungal cells. Although resistance to amphotericin-B has been reported, it continues to be the most important treatment for life-threatening conditions and more severe ophthalmic infections. Natamycin is often first choice for filamentous fungal keratitis and topical amphotericin-B for Candida keratitis. Continued monitoring of the behaviour of ocular fungi will be essential in future together with the development of new anti-fungal agents.
Resumo:
The Saccharomyces cerevisiae Mod5 protein catalyzes isopentenylation of A to i6A on tRNAs in the nucleus, cytosol, and mitochondria. The substrate for Mod5p, dimethylallyl pyrophosphate, is also a substrate for Erg20p that catalyzes an essential step in sterol biosynthesis. Changing the distribution of Mod5p so that less Mod5p is present in the cytosol decreases i6A on cytosolic tRNAs and alters tRNA-mediated nonsense suppression. We devised a colony color/growth assay to assess tRNA-mediated nonsense suppression and used it to search for genes, which, when overexpressed, affect nonsense suppression. We identified SAL6, TEF4, and YDL219w, all of which likely affect nonsense suppression via alteration of the protein synthesis machinery. We also identified ARC1, whose product interacts with aminoacyl synthetases. Interestingly, we identified ERG20. Midwestern analysis showed that yeast cells overproducing Erg20p have reduced levels of i6A on tRNAs. Thus, Erg20p appears to affect nonsense suppression by competing with Mod5p for substrate. Identification of ERG20 reveals that yeast have a limited pool of dimethylallyl pyrophosphate. It also demonstrates that disrupting the balance between enzymes that use dimethylallyl pyrophosphate as substrate affects translation.