813 resultados para Stereo vision
Resumo:
To use a world model, a mobile robot must be able to determine its own position in the world. To support truly autonomous navigation, I present MARVEL, a system that builds and maintains its own models of world locations and uses these models to recognize its world position from stereo vision input. MARVEL is designed to be robust with respect to input errors and to respond to a gradually changing world by updating its world location models. I present results from real-world tests of the system that demonstrate its reliability. MARVEL fits into a world modeling system under development.
Resumo:
L'analisi di un'immagine con strumenti automatici si è sviluppata in quella che oggi viene chiamata "computer vision", la materia di studio proveniente dal mondo informatico che si occupa, letteralmente, di "vedere oltre", di estrarre da una figura una serie di aspetti strutturali, sotto forma di dati numerici. Tra le tante aree di ricerca che ne derivano, una in particolare è dedicata alla comprensione di un dettaglio estremamente interessante, che si presta ad applicazioni di molteplici tipologie: la profondità. L'idea di poter recuperare ciò che, apparentemente, si era perso fermando una scena ed imprimendone l'istante in un piano a due dimensioni poteva sembrare, fino a non troppi anni fa, qualcosa di impossibile. Grazie alla cosiddetta "visione stereo", invece, oggi possiamo godere della "terza dimensione" in diversi ambiti, legati ad attività professionali piuttosto che di svago. Inoltre, si presta ad utilizzi ancora più interessanti quando gli strumenti possono vantare caratteristiche tecniche accessibili, come dimensioni ridotte e facilità d'uso. Proprio quest'ultimo aspetto ha catturato l'attenzione di un gruppo di lavoro, dal quale è nata l'idea di sviluppare una soluzione, chiamata "SuperStereo", capace di permettere la stereo vision usando uno strumento estremamente diffuso nel mercato tecnologico globale: uno smartphone e, più in generale, qualsiasi dispositivo mobile appartenente a questa categoria.
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 10 m. Classical epipolar techniques and modern variational methods are reviewed to reconstruct the sea surface from the stereo pairs sequentially in time. The statistical and spectral properties of the resulting observed waves are analyzed. Current improvements of the variational methods are discussed as future lines of research.
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss future lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.
Resumo:
Remote sensing imaging systems for the measurement of oceanic sea states have recently attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss the improvement of their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters.
Resumo:
Clouds are important in weather prediction, climate studies and aviation safety. Important parameters include cloud height, type and cover percentage. In this paper, the recent improvements in the development of a low-cost cloud height measurement setup are described. It is based on stereo vision with consumer digital cameras. The cameras positioning is calibrated using the position of stars in the night sky. An experimental uncertainty analysis of the calibration parameters is performed. Cloud height measurement results are presented and compared with LIDAR measurements.
Resumo:
This work aims to develop a neurogeometric model of stereo vision, based on cortical architectures involved in the problem of 3D perception and neural mechanisms generated by retinal disparities. First, we provide a sub-Riemannian geometry for stereo vision, inspired by the work on the stereo problem by Zucker (2006), and using sub-Riemannian tools introduced by Citti-Sarti (2006) for monocular vision. We present a mathematical interpretation of the neural mechanisms underlying the behavior of binocular cells, that integrate monocular inputs. The natural compatibility between stereo geometry and neurophysiological models shows that these binocular cells are sensitive to position and orientation. Therefore, we model their action in the space R3xS2 equipped with a sub-Riemannian metric. Integral curves of the sub-Riemannian structure model neural connectivity and can be related to the 3D analog of the psychophysical association fields for the 3D process of regular contour formation. Then, we identify 3D perceptual units in the visual scene: they emerge as a consequence of the random cortico-cortical connection of binocular cells. Considering an opportune stochastic version of the integral curves, we generate a family of kernels. These kernels represent the probability of interaction between binocular cells, and they are implemented as facilitation patterns to define the evolution in time of neural population activity at a point. This activity is usually modeled through a mean field equation: steady stable solutions lead to consider the associated eigenvalue problem. We show that three-dimensional perceptual units naturally arise from the discrete version of the eigenvalue problem associated to the integro-differential equation of the population activity.
Resumo:
A presente dissertação endereça o desenvolvimento de um sistema de visão stereo ativo para os robôs de futebol robótico da equipa ISePorto do ISEP, de modo a que estes tirem o máximo partido das câmaras rotativas neles existentes. Este trabalho surge da necessidade de melhorar a capacidade de perceção do ambiente por parte dos robôs, principalmente da perceção da bola quando não está no plano do campo e dos robôs adversários. Esta necessidade surge devido ao aumento da dinâmica que se tem vindo a veri car ultimamente nas competições. Para tal, foram estudados algumas trabalhos relacionados no que diz respeito a sistemas de visão stereo com baselines variáveis e eixos de rotação em ambas as câmaras, bem como fundamentos de visão stereo. Foi proposta uma arquitetura para o sistema de visão ativo de modo a ser aplicado em qualquer robô da equipa MSL (Middle Size League). Para tornar possível a implementação desta arquitetura foi desenvolvido um procedimento para a calibração e determinação em tempo real dos parâmetros extrínsecos do par stereo em função da posição angular dos eixos rotativos do robô. O sistema de visão foi também dotado de capacidade de sincronismo e foram implementadas funcionalidades ao nível de software que possibilitam a deteção de objetos na imagem, a correspondência de objetos presentes nas imagens de ambas as câmaras e consequentemente a determinação das posições tridimensionais desses objetos relativamente ao robô. O sistema desenvolvido foi testado e validado em cenário MSL ao nível de perceção da bola, robôs adversários e linhas do campo. Os resultados obtidos apresentam uma melhoria signi cativa, face à implementação atual dos robôs, na perceção tridimensional da bola quando não está no plano do campo, e dos robôs adversários.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
Resumo:
In this work we propose a new automatic methodology for computing accurate digital elevation models (DEMs) in urban environments from low baseline stereo pairs that shall be available in the future from a new kind of earth observation satellite. This setting makes both views of the scene similarly, thus avoiding occlusions and illumination changes, which are the main disadvantages of the commonly accepted large-baseline configuration. There still remain two crucial technological challenges: (i) precisely estimating DEMs with strong discontinuities and (ii) providing a statistically proven result, automatically. The first one is solved here by a piecewise affine representation that is well adapted to man-made landscapes, whereas the application of computational Gestalt theory introduces reliability and automation. In fact this theory allows us to reduce the number of parameters to be adjusted, and tocontrol the number of false detections. This leads to the selection of a suitable segmentation into affine regions (whenever possible) by a novel and completely automatic perceptual grouping method. It also allows us to discriminate e.g. vegetation-dominated regions, where such an affine model does not apply anda more classical correlation technique should be preferred. In addition we propose here an extension of the classical ”quantized” Gestalt theory to continuous measurements, thus combining its reliability with the precision of variational robust estimation and fine interpolation methods that are necessary in the low baseline case. Such an extension is very general and will be useful for many other applications as well.
Resumo:
This work presents the implementation and comparison of three different techniques of three-dimensional computer vision as follows: • Stereo vision - correlation between two 2D images • Sensorial fusion - use of different sensors: camera 2D + ultrasound sensor (1D); • Structured light The computer vision techniques herein presented took into consideration the following characteristics: • Computational effort ( elapsed time for obtain the 3D information); • Influence of environmental conditions (noise due to a non uniform lighting, overlighting and shades); • The cost of the infrastructure for each technique; • Analysis of uncertainties, precision and accuracy. The option of using the Matlab software, version 5.1, for algorithm implementation of the three techniques was due to the simplicity of their commands, programming and debugging. Besides, this software is well known and used by the academic community, allowing the results of this work to be obtained and verified. Examples of three-dimensional vision applied to robotic assembling tasks ("pick-and-place") are presented.
Resumo:
Aquesta tesi s'emmarca dins del projecte CICYT TAP 1999-0443-C05-01. L'objectiu d'aquest projecte és el disseny, implementació i avaluació de robots mòbils, amb un sistema de control distribuït, sistemes de sensorització i xarxa de comunicacions per realitzar tasques de vigilància. Els robots han de poder-se moure per un entorn reconeixent la posició i orientació dels diferents objectes que l'envolten. Aquesta informació ha de permetre al robot localitzar-se dins de l'entorn on es troba per poder-se moure evitant els possibles obstacles i dur a terme la tasca encomanada. El robot ha de generar un mapa dinàmic de l'entorn que serà utilitzat per localitzar la seva posició. L'objectiu principal d'aquest projecte és aconseguir que un robot explori i construeixi un mapa de l'entorn sense la necessitat de modificar el propi entorn. Aquesta tesi està enfocada en l'estudi de la geometria dels sistemes de visió estereoscòpics formats per dues càmeres amb l'objectiu d'obtenir informació geomètrica 3D de l'entorn d'un vehicle. Aquest objectiu tracta de l'estudi del modelatge i la calibració de càmeres i en la comprensió de la geometria epipolar. Aquesta geometria està continguda en el que s'anomena emph{matriu fonamental}. Cal realitzar un estudi del càlcul de la matriu fonamental d'un sistema estereoscòpic amb la finalitat de reduir el problema de la correspondència entre dos plans imatge. Un altre objectiu és estudiar els mètodes d'estimació del moviment basats en la geometria epipolar diferencial per tal de percebre el moviment del robot i obtenir-ne la posició. Els estudis de la geometria que envolta els sistemes de visió estereoscòpics ens permeten presentar un sistema de visió per computador muntat en un robot mòbil que navega en un entorn desconegut. El sistema fa que el robot sigui capaç de generar un mapa dinàmic de l'entorn a mesura que es desplaça i determinar quin ha estat el moviment del robot per tal de emph{localitzar-se} dins del mapa. La tesi presenta un estudi comparatiu dels mètodes de calibració de càmeres més utilitzats en les últimes dècades. Aquestes tècniques cobreixen un gran ventall dels mètodes de calibració clàssics. Aquest mètodes permeten estimar els paràmetres de la càmera a partir d'un conjunt de punts 3D i de les seves corresponents projeccions 2D en una imatge. Per tant, aquest estudi descriu un total de cinc tècniques de calibració diferents que inclouen la calibració implicita respecte l'explicita i calibració lineal respecte no lineal. Cal remarcar que s'ha fet un gran esforç en utilitzar la mateixa nomenclatura i s'ha estandaritzat la notació en totes les tècniques presentades. Aquesta és una de les dificultats principals a l'hora de poder comparar les tècniques de calibració ja què cada autor defineix diferents sistemes de coordenades i diferents conjunts de paràmetres. El lector és introduït a la calibració de càmeres amb la tècnica lineal i implícita proposada per Hall i amb la tècnica lineal i explicita proposada per Faugeras-Toscani. A continuació es passa a descriure el mètode a de Faugeras incloent el modelatge de la distorsió de les lents de forma radial. Seguidament es descriu el conegut mètode proposat per Tsai, i finalment es realitza una descripció detallada del mètode de calibració proposat per Weng. Tots els mètodes són comparats tant des del punt de vista de model de càmera utilitzat com de la precisió de la calibració. S'han implementat tots aquests mètodes i s'ha analitzat la precisió presentant resultats obtinguts tant utilitzant dades sintètiques com càmeres reals. Calibrant cada una de les càmeres del sistema estereoscòpic es poden establir un conjunt de restriccions geomètri ques entre les dues imatges. Aquestes relacions són el que s'anomena geometria epipolar i estan contingudes en la matriu fonamental. Coneixent la geometria epipolar es pot: simplificar el problema de la correspondència reduint l'espai de cerca a llarg d'una línia epipolar; estimar el moviment d'una càmera quan aquesta està muntada sobre un robot mòbil per realitzar tasques de seguiment o de navegació; reconstruir una escena per aplicacions d'inspecció, propotipatge o generació de motlles. La matriu fonamental s'estima a partir d'un conjunt de punts en una imatges i les seves correspondències en una segona imatge. La tesi presenta un estat de l'art de les tècniques d'estimació de la matriu fonamental. Comença pels mètode lineals com el dels set punts o el mètode dels vuit punts, passa pels mètodes iteratius com el mètode basat en el gradient o el CFNS, fins arribar las mètodes robustos com el M-Estimators, el LMedS o el RANSAC. En aquest treball es descriuen fins a 15 mètodes amb 19 implementacions diferents. Aquestes tècniques són comparades tant des del punt de vista algorísmic com des del punt de vista de la precisió que obtenen. Es presenten el resultats obtinguts tant amb imatges reals com amb imatges sintètiques amb diferents nivells de soroll i amb diferent quantitat de falses correspondències. Tradicionalment, l'estimació del moviment d'una càmera està basada en l'aplicació de la geometria epipolar entre cada dues imatges consecutives. No obstant el cas tradicional de la geometria epipolar té algunes limitacions en el cas d'una càmera situada en un robot mòbil. Les diferencies entre dues imatges consecutives són molt petites cosa que provoca inexactituds en el càlcul de matriu fonamental. A més cal resoldre el problema de la correspondència, aquest procés és molt costós en quant a temps de computació i no és gaire efectiu per aplicacions de temps real. En aquestes circumstàncies les tècniques d'estimació del moviment d'una càmera solen basar-se en el flux òptic i en la geometria epipolar diferencial. En la tesi es realitza un recull de totes aquestes tècniques degudament classificades. Aquests mètodes són descrits unificant la notació emprada i es remarquen les semblances i les diferencies entre el cas discret i el cas diferencial de la geometria epipolar. Per tal de poder aplicar aquests mètodes a l'estimació de moviment d'un robot mòbil, aquest mètodes generals que estimen el moviment d'una càmera amb sis graus de llibertat, han estat adaptats al cas d'un robot mòbil que es desplaça en una superfície plana. Es presenten els resultats obtinguts tant amb el mètodes generals de sis graus de llibertat com amb els adaptats a un robot mòbil utilitzant dades sintètiques i seqüències d'imatges reals. Aquest tesi finalitza amb una proposta de sistema de localització i de construcció d'un mapa fent servir un sistema estereoscòpic situat en un robot mòbil. Diverses aplicacions de robòtica mòbil requereixen d'un sistema de localització amb l'objectiu de facilitar la navegació del vehicle i l'execució del les trajectòries planificades. La localització es sempre relativa al mapa de l'entorn on el robot s'està movent. La construcció de mapes en un entorn desconegut és una tasca important a realitzar per les futures generacions de robots mòbils. El sistema que es presenta realitza la localització i construeix el mapa de l'entorn de forma simultània. A la tesi es descriu el robot mòbil GRILL, que ha estat la plataforma de treball emprada per aquesta aplicació, amb el sistema de visió estereoscòpic que s'ha dissenyat i s'ha muntat en el robot. També es descriu tots el processos que intervenen en el sistema de localització i construcció del mapa. La implementació d'aquest processos ha estat possible gràcies als estudis realitzats i presentats prèviament (calibració de càmeres, estimació de la matriu fonamental, i estimació del moviment) sense els quals no s'hauria pogut plantejar aquest sistema. Finalment es presenten els mapes en diverses trajectòries realitzades pel robot GRILL en el laboratori. Les principals contribucions d'aquest treball són: ·Un estat de l'art sobre mètodes de calibració de càmeres. El mètodes són comparats tan des del punt de vista del model de càmera utilitzat com de la precisió dels mètodes. ·Un estudi dels mètodes d'estimació de la matriu fonamental. Totes les tècniques estudiades són classificades i descrites des d'un punt de vista algorísmic. ·Un recull de les tècniques d'estimació del moviment d'una càmera centrat en el mètodes basat en la geometria epipolar diferencial. Aquestes tècniques han estat adaptades per tal d'estimar el moviment d'un robot mòbil. ·Una aplicació de robòtica mòbil per tal de construir un mapa dinàmic de l'entorn i localitzar-se per mitja d'un sistema estereoscòpic. L'aplicació presentada es descriu tant des del punt de vista del maquinari com del programari que s'ha dissenyat i implementat.
Resumo:
There is clear evidence that investment in intelligent transportation system technologies brings major social and economic benefits. Technological advances in the area of automatic systems in particular are becoming vital for the reduction of road deaths. We here describe our approach to automation of one the riskiest autonomous manœuvres involving vehicles – overtaking. The approach is based on a stereo vision system responsible for detecting any preceding vehicle and triggering the autonomous overtaking manœuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans overtake. Its input is information from the vision system and from a positioning-based system consisting of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is the generation of action on the vehicle’s actuators, i.e., the steering wheel and throttle and brake pedals. The system has been incorporated into a commercial Citroën car and tested on the private driving circuit at the facilities of our research center, CAR, with different preceding vehicles – a motorbike, car, and truck – with encouraging results.
Resumo:
El principal objetivo de este trabajo es proporcionar una solución en tiempo real basada en visión estéreo o monocular precisa y robusta para que un vehículo aéreo no tripulado (UAV) sea autónomo en varios tipos de aplicaciones UAV, especialmente en entornos abarrotados sin señal GPS. Este trabajo principalmente consiste en tres temas de investigación de UAV basados en técnicas de visión por computador: (I) visual tracking, proporciona soluciones efectivas para localizar visualmente objetos de interés estáticos o en movimiento durante el tiempo que dura el vuelo del UAV mediante una aproximación adaptativa online y una estrategia de múltiple resolución, de este modo superamos los problemas generados por las diferentes situaciones desafiantes, tales como cambios significativos de aspecto, iluminación del entorno variante, fondo del tracking embarullado, oclusión parcial o total de objetos, variaciones rápidas de posición y vibraciones mecánicas a bordo. La solución ha sido utilizada en aterrizajes autónomos, inspección de plataformas mar adentro o tracking de aviones en pleno vuelo para su detección y evasión; (II) odometría visual: proporciona una solución eficiente al UAV para estimar la posición con 6 grados de libertad (6D) usando únicamente la entrada de una cámara estéreo a bordo del UAV. Un método Semi-Global Blocking Matching (SGBM) eficiente basado en una estrategia grueso-a-fino ha sido implementada para una rápida y profunda estimación del plano. Además, la solución toma provecho eficazmente de la información 2D y 3D para estimar la posición 6D, resolviendo de esta manera la limitación de un punto de referencia fijo en la cámara estéreo. Una robusta aproximación volumétrica de mapping basada en el framework Octomap ha sido utilizada para reconstruir entornos cerrados y al aire libre bastante abarrotados en 3D con memoria y errores correlacionados espacialmente o temporalmente; (III) visual control, ofrece soluciones de control prácticas para la navegación de un UAV usando Fuzzy Logic Controller (FLC) con la estimación visual. Y el framework de Cross-Entropy Optimization (CEO) ha sido usado para optimizar el factor de escala y la función de pertenencia en FLC. Todas las soluciones basadas en visión en este trabajo han sido probadas en test reales. Y los conjuntos de datos de imágenes reales grabados en estos test o disponibles para la comunidad pública han sido utilizados para evaluar el rendimiento de estas soluciones basadas en visión con ground truth. Además, las soluciones de visión presentadas han sido comparadas con algoritmos de visión del estado del arte. Los test reales y los resultados de evaluación muestran que las soluciones basadas en visión proporcionadas han obtenido rendimientos en tiempo real precisos y robustos, o han alcanzado un mejor rendimiento que aquellos algoritmos del estado del arte. La estimación basada en visión ha ganado un rol muy importante en controlar un UAV típico para alcanzar autonomía en aplicaciones UAV. ABSTRACT The main objective of this dissertation is providing real-time accurate robust monocular or stereo vision-based solution for Unmanned Aerial Vehicle (UAV) to achieve the autonomy in various types of UAV applications, especially in GPS-denied dynamic cluttered environments. This dissertation mainly consists of three UAV research topics based on computer vision technique: (I) visual tracking, it supplys effective solutions to visually locate interesting static or moving object over time during UAV flight with on-line adaptivity approach and multiple-resolution strategy, thereby overcoming the problems generated by the different challenging situations, such as significant appearance change, variant surrounding illumination, cluttered tracking background, partial or full object occlusion, rapid pose variation and onboard mechanical vibration. The solutions have been utilized in autonomous landing, offshore floating platform inspection and midair aircraft tracking for sense-and-avoid; (II) visual odometry: it provides the efficient solution for UAV to estimate the 6 Degree-of-freedom (6D) pose using only the input of stereo camera onboard UAV. An efficient Semi-Global Blocking Matching (SGBM) method based on a coarse-to-fine strategy has been implemented for fast depth map estimation. In addition, the solution effectively takes advantage of both 2D and 3D information to estimate the 6D pose, thereby solving the limitation of a fixed small baseline in the stereo camera. A robust volumetric occupancy mapping approach based on the Octomap framework has been utilized to reconstruct indoor and outdoor large-scale cluttered environments in 3D with less temporally or spatially correlated measurement errors and memory; (III) visual control, it offers practical control solutions to navigate UAV using Fuzzy Logic Controller (FLC) with the visual estimation. And the Cross-Entropy Optimization (CEO) framework has been used to optimize the scaling factor and the membership function in FLC. All the vision-based solutions in this dissertation have been tested in real tests. And the real image datasets recorded from these tests or available from public community have been utilized to evaluate the performance of these vision-based solutions with ground truth. Additionally, the presented vision solutions have compared with the state-of-art visual algorithms. Real tests and evaluation results show that the provided vision-based solutions have obtained real-time accurate robust performances, or gained better performance than those state-of-art visual algorithms. The vision-based estimation has played a critically important role for controlling a typical UAV to achieve autonomy in the UAV application.