918 resultados para Stepwise multiple regression
Resumo:
An investigator may also wish to select a small subset of the X variables which give the best prediction of the Y variable. In this case, the question is how many variables should the regression equation include? One method would be to calculate the regression of Y on every subset of the X variables and choose the subset that gives the smallest mean square deviation from the regression. Most investigators, however, prefer to use a ‘stepwise multiple regression’ procedure. There are two forms of this analysis called the ‘step-up’ (or ‘forward’) method and the ‘step-down’ (or ‘backward’) method. This Statnote illustrates the use of stepwise multiple regression with reference to the scenario introduced in Statnote 24, viz., the influence of climatic variables on the growth of the crustose lichen Rhizocarpon geographicum (L.)DC.
Resumo:
It is common in econometric applications that several hypothesis tests arecarried out at the same time. The problem then becomes how to decide whichhypotheses to reject, accounting for the multitude of tests. In this paper,we suggest a stepwise multiple testing procedure which asymptoticallycontrols the familywise error rate at a desired level. Compared to relatedsingle-step methods, our procedure is more powerful in the sense that itoften will reject more false hypotheses. In addition, we advocate the useof studentization when it is feasible. Unlike some stepwise methods, ourmethod implicitly captures the joint dependence structure of the teststatistics, which results in increased ability to detect alternativehypotheses. We prove our method asymptotically controls the familywise errorrate under minimal assumptions. We present our methodology in the context ofcomparing several strategies to a common benchmark and deciding whichstrategies actually beat the benchmark. However, our ideas can easily beextended and/or modied to other contexts, such as making inference for theindividual regression coecients in a multiple regression framework. Somesimulation studies show the improvements of our methods over previous proposals. We also provide an application to a set of real data.
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.
Resumo:
This study examined the relationship between isokinetic hip extensor/hip flexor strength, 1-RM squat strength, and sprint running performance for both a sprint-trained and non-sprint-trained group. Eleven male sprinters and 8 male controls volunteered for the study. On the same day subjects ran 20-m sprints from both a stationary start and with a 50-m acceleration distance, completed isokinetic hip extension/flexion exercises at 1.05, 4.74, and 8.42 rad.s(-1), and had their squat strength estimated. Stepwise multiple regression analysis showed that equations for predicting both 20-m maximum velocity nm time and 20-m acceleration time may be calculated with an error of less than 0.05 sec using only isokinetic and squat strength data. However, a single regression equation for predicting both 20-m acceleration and maximum velocity run times from isokinetic or squat tests was not found. The regression analysis indicated that hip flexor strength at all test velocities was a better predictor of sprint running performance than hip extensor strength.
Resumo:
The aim of this work is to establish a relationship between schistosomiasis prevalence and social-environmental variables, in the state of Minas Gerais, Brazil, through multiple linear regression. The final regression model was established, after a variables selection phase, with a set of spatial variables which contains the summer minimum temperature, human development index, and vegetation type variables. Based on this model, a schistosomiasis risk map was built for Minas Gerais.
Resumo:
Resumen tomado de la publicación
Resumo:
The purposes of this study were (1) to validate of the item-attribute matrix using two levels of attributes (Level 1 attributes and Level 2 sub-attributes), and (2) through retrofitting the diagnostic models to the mathematics test of the Trends in International Mathematics and Science Study (TIMSS), to evaluate the construct validity of TIMSS mathematics assessment by comparing the results of two assessment booklets. Item data were extracted from Booklets 2 and 3 for the 8th grade in TIMSS 2007, which included a total of 49 mathematics items and every student's response to every item. The study developed three categories of attributes at two levels: content, cognitive process (TIMSS or new), and comprehensive cognitive process (or IT) based on the TIMSS assessment framework, cognitive procedures, and item type. At level one, there were 4 content attributes (number, algebra, geometry, and data and chance), 3 TIMSS process attributes (knowing, applying, and reasoning), and 4 new process attributes (identifying, computing, judging, and reasoning). At level two, the level 1 attributes were further divided into 32 sub-attributes. There was only one level of IT attributes (multiple steps/responses, complexity, and constructed-response). Twelve Q-matrices (4 originally specified, 4 random, and 4 revised) were investigated with eleven Q-matrix models (QM1 ~ QM11) using multiple regression and the least squares distance method (LSDM). Comprehensive analyses indicated that the proposed Q-matrices explained most of the variance in item difficulty (i.e., 64% to 81%). The cognitive process attributes contributed to the item difficulties more than the content attributes, and the IT attributes contributed much more than both the content and process attributes. The new retrofitted process attributes explained the items better than the TIMSS process attributes. Results generated from the level 1 attributes and the level 2 attributes were consistent. Most attributes could be used to recover students' performance, but some attributes' probabilities showed unreasonable patterns. The analysis approaches could not demonstrate if the same construct validity was supported across booklets. The proposed attributes and Q-matrices explained the items of Booklet 2 better than the items of Booklet 3. The specified Q-matrices explained the items better than the random Q-matrices.
Resumo:
Issued May 1980.
Resumo:
Chiefly tables.
Resumo:
Bibliographical footnotes.
Resumo:
Researchers often use 3-way interactions in moderated multiple regression analysis to test the joint effect of 3 independent variables on a dependent variable. However, further probing of significant interaction terms varies considerably and is sometimes error prone. The authors developed a significance test for slope differences in 3-way interactions and illustrate its importance for testing psychological hypotheses. Monte Carlo simulations revealed that sample size, magnitude of the slope difference, and data reliability affected test power. Application of the test to published data yielded detection of some slope differences that were undetected by alternative probing techniques and led to changes of results and conclusions. The authors conclude by discussing the test's applicability for psychological research. Copyright 2006 by the American Psychological Association.
Resumo:
The aim of this research work was primarily to examine the relevance of patient parameters, ward structures, procedures and practices, in respect of the potential hazards of wound cross-infection and nasal colonisation with multiple resistant strains of Staphylococcus aureus, which it is thought might provide a useful indication of a patient's general susceptibility to wound infection. Information from a large cross-sectional survey involving 12,000 patients from some 41 hospitals and 375 wards was collected over a five-year period from 1967-72, and its validity checked before any subsequent analysis was carried out. Many environmental factors and procedures which had previously been thought (but never conclusively proved) to have an influence on wound infection or nasal colonisation rates, were assessed, and subsequently dismissed as not being significant, provided that the standard of the current range of practices and procedures is maintained and not allowed to deteriorate. Retrospective analysis revealed that the probability of wound infection was influenced by the patient's age, duration of pre-operative hospitalisation, sex, type of wound, presence and type of drain, number of patients in ward, and other special risk factors, whilst nasal colonisation was found to be influenced by the patient's age, total duration of hospitalisation, sex, antibiotics, proportion of occupied beds in the ward, average distance between bed centres and special risk factors. A multi-variate regression analysis technique was used to develop statistical models, consisting of variable patient and environmental factors which were found to have a significant influence on the risks pertaining to wound infection and nasal colonisation. A relationship between wound infection and nasal colonisation was then established and this led to the development of a more advanced model for predicting wound infections, taking advantage of the additional knowledge of the patient's state of nasal colonisation prior to operation.