214 resultados para Stepped spillways


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the design flows of many dams were re-evaluated, often resulting in discharges larger than the original design. In many cases, the occurrence of the revised flows could result in dam overtopping because of insufficient storage and spillway capacity. An experimental study was conducted herein to gain a better understanding of the flow properties in stepped chutes with slopes typical of embankment dams. The work was based upon a Froude similitude in large-size experimental facilities. A total of 10 configurations were tested including smooth steps, steps equipped with devices to enhance energy dissipation and rough steps. The present results yield a new design procedure. The design method includes some key issues not foreseen in prior studies : e.g., gradually varied flow, type of flow regime, flow resistance. It is believed that the outcomes are valid for a wide range of chute geometry and flow conditions typical of embankment chutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Darcy-Weisbach equation was used in the analysis of flow over spillways, furnishing theoretical tools to design stilling basins. Predictions for the length of hydraulic jump stilling basins downstream of stepped and smooth spillways are presented, together with ranges of values for the Darcy-Weisbach friction factor of both spillways. The experimental data were compared with results of the theoretical solution of the gradually varied flow equation. All comparisons were made in non-dimensional form. The values of the Darcy-Weisbach friction factor were roughly five times smaller for smooth spillways than for stepped spillways. The theoretical predictions and the experimental data allow to present approximate equations for a preliminary evaluation of the length and the bed level of hydraulic jump stilling basins. In the same way, approximate equations were presented for the evaluation of the friction factor in smooth and stepped spillways, as a function of the Froude number at the downstream cross-section.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Modern stepped spillways are typically designed for large discharge capacities corresponding to a skimming flow regime for which flow resistance is predominantly form drag. The writer demonstrates that the inflow conditions have some effect on the skimming flow properties. Boundary layer calculations show that the flow properties at inception of free-surface aeration are substantially different with pressurized intake. The re-analysis of experimental results highlights that the equivalent Darcy friction factor is f similar to 0.2 in average on uncontrolled stepped Chute and f similar to 0.1 on stepped chute with pressurized intake. A simple design chart is presented to estimate the residual flow velocity, and the agreement of the calculations with experimental results is deemed satisfactory for preliminary design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Air concentration measurements performed along the lower nappe of a bottom aerator through the impact and downstream flow regions permitted the calculation of air entrainment along the jet length. The air uptake was also measured in the air supply conduit. It was shown that integration of the concentration profiles along the jet overestimates the air uptake measured in the air supply conduit. Corrective procedures were developed by adapting the concept of entrained and entrapped air, in which the latter is re-circulated in the cavity, but both are measured by air concentration probes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Durante las últimas tres décadas el interés y diversidad en el uso de canales escalonados han aumentado debido al desarrollo de nuevas técnicas y materiales que permiten su construcción de manera rápida y económica (Concreto compactado con rodillo CCR, Gaviones, etc.). Actualmente, los canales escalonados se usan como vertedores y/o canales para peces en presas y diques, como disipadores de energía en canales y ríos, o como aireadores en plantas de tratamiento y torrentes contaminados. Diversos investigadores han estudiado el flujo en vertedores escalonados, enfocándose en estructuras de gran pendiente (  45o) por lo que a la fecha, el comportamiento del flujo sobre vertedores con pendientes moderadas (  15 a 30o) no ha sido totalmente comprendido. El presente artículo comprende un estudio experimental de las propiedades físicas del flujo aire-agua sobre canales escalonados con pendientes moderadas, típicas en presas de materiales sueltos. Un extenso rango de gastos en condiciones de flujo rasante se investigó en dos modelos experimentales a gran escala (Le = 3 a 6): Un canal con pendiente 3.5H:1V (  16o) y dos alturas de escalón distintas (h = 0.1 y 0.05 m) y un canal con pendiente 2.5H:1V (  22o) y una altura de escalón de h = 0.1 m. Los resultados incluyen un análisis detallado de las propiedades del flujo en vertedores escalonados con pendientes moderadas y un nuevo criterio de diseño hidráulico, el cual está basado en los resultados experimentales obtenidos. English abstract: Stepped chutes have been used as hydraulic structures since antiquity, they can be found acting as spillways and fish ladders in dams and weirs, as energy dissipators in artificial channels, gutters and rivers, and as aeration enhancers in water treatment plants and polluted streams. In recent years, new construction techniques and materials (Roller Compacted Concrete RCC, rip-rap gabions, etc.) together with the development of the abovementioned new applications have allowed cheaper construction methods, increasing the interest in stepped chute design. During the last three decades, research in stepped spillways has been very active. However, studies prior to 1993 neglected the effect of free-surface aeration. A number of studies have focused since on steep stepped chutes (  45o) but the hydraulic performance of moderate-slope stepped channels is not yet totally understood. This study details an experimental investigation of physical air-water flow properties down moderate slope stepped spillways conducted in two laboratory models: the first model was a 3.15 m long stepped chute with a 15.9o slope comprising two interchangeable step heights (h = 0.1 m and h = 0.05 m); the second model was a 3.3 m long, stepped channel with a 21.8o slope (h = 0.1 m). A broad range of discharges within transition and skimming flow regimes was investigated. Measurements were conducted using a double tip conductivity probe. The study provides new, original insights into air-water stepped chute flows not foreseen in prior studies and presents a new design criterion for chutes with moderate slopes based on the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions between turbulent waters and atmosphere may lead to strong air-water mixing. This experimental study is focused on the flow down a staircase channel characterised by very strong flow aeration and turbulence. Interfacial aeration is characterised by strong air-water mixing extending down to the invert. The size of entrained bubbles and droplets extends over several orders of magnitude, and a significant number of bubble/droplet clusters was observed. Velocity and turbulence intensity measurements suggest high levels of turbulence across the entire air-water flow. The increase in turbulence levels, compared to single-phase flow situations, is proportional to the number of entrained particles. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidation of ethanol on ruthenium-modified Pt(775) and Pt(332) stepped electrodes has been studied using electrochemical and FTIR techniques. It has been found that the oxidation of ethanol on these electrodes takes place preferentially on the step sites yielding CO(2) as the major final product. The cleavage of the C-C bond, which is the required step to yield CO(2), occurs only on this type of site. The presence of low ruthenium coverages on the step sites promotes the complete oxidation of ethanol since it facilitates the oxidation of CO formed on the step from the cleavage of the C-C bond. However, high ruthenium coverages have an important inhibiting effect since the adatoms block the step sites, which are required for the cleavage of the C-C bond. Under these conditions, the oxidation current diminishes and the major product in the oxidation process is acetic acid, which is the product formed preferentially on the (111) terrace sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol oxidation on platinum stepped surfaces vicinal to the (111) pole modified by tin has been studied to determine the role of this adatom in the oxidation mechanism. Tin has been slowly deposited so that the initial stages of the deposition take place on the step, and deposition on the terrace only occurs when the step has been completely decorated. Voltammetric and chronoamperometric experiments demonstrate that tin on the step catalyzes the oxidation. The maximum enhancement is found when the step is completely decorated by tin. FTIR experiments using normal and isotopically labeled ethanol have been used to elucidate the effect of the tin adatoms in the mechanism. The obtained results indicate that the role of tin is double: (i) when the surface has sites capable of breaking the C-C bond of the molecule, that is, when the step sites are not completely covered by tin, it promotes the oxidation of CO formed from the molecular fragments to CO(2) through a bifunctional mechanism and (ii) it catalyzes the oxidation of ethanol to acetic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) of turbulent flow around a rotating cylinder with two backward-facing steps axisymmetrically mounted in the circumferential direction was performed and compared with DNS of plane backward-facing step flow (PBSF) of Le [J. Fluid Mech. 330, 349 (1997)]. The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. It turned out that the current flow shows flow structures quite similar to those of PBSF downstream of the step, even though configurations of the two flows are totally different from one another. The stepped cylinder appears to be a cost-effective tool in the generation of flow structures similar to those of PBSF. (C) 2002 American Institute of Physics.