932 resultados para Steel ladle lining
Resumo:
The corrosion resistance of resin bonded alumina/magnesia/graphite refractories containing different kinds of aggregates were investigated when submitted to the action of slags of several CaO/SiO2 ratios. The laboratory testing was performed by means of the rotary slag attack test. Specifically evaluated was the influence of alumina/carbon ratio and magnesia and silica contents on the refractories corrosion resistance. It was found that this property could be improved by increasing the refractory Al2O3/SiO2 ratio as well as by choosing the appropriate Al2O3/C ratio. © 2000 Elsevier Science Ltd.
Resumo:
A campanha dos refratários magnesianos aplicados como revestimento de trabalho de panelas de aciaria depende da soma de diversos fatores como resistência à corrosão, resistência à oxidação do carbono, estabilidade termomecânica, entre outros. A concepção microestrutural do refratário pode influenciar de forma benéfica ou deletéria no desempenho do refratário in situ. Nesta tese de doutorado os refratários magnesianos comerciais de panela de aciaria foram estudados sob três diferentes aspectos: redução da oxidação prematura do carbono, formação da fase espinélio de alumina e magnésio e resistência ao choque térmico e ao dano por choque térmico. Para reduzir a oxidação precoce do carbono foi desenvolvido um coating cerâmico que atua como uma eficiente barreira física, reduzindo o contato do oxigênio da atmosfera de aquecimento com o carbono presente no refratário. Como resultado reduz-se a oxidação prematura do carbono e eleva-se a vida útil do revestimento. A formação da fase espinélio de magnésia e alumina também influencia o desempenho termomecânico destes refratários, principalmente devido ao incremento volumétrico decorrente de sua formação. Nesta tese foram estudados os mecanismos de formação desta fase in situ, demonstrando experimentalmente o caminho preferencial que leva à formação desta fase mineralógica. O comportamento termomecânico dos refratários magnesianos foi determinado em função da resistência ao choque térmico (parâmetros R, R\'\'\') e quanto à resistência ao dano por choque térmico (parâmetro R\'\'\'\' e Rst). Estes parâmetros foram correlacionados com as respectivas características microestruturais destes refratários. Os resultados apresentados por esta tese de doutorado compõe uma importante ferramenta técnica para as indústrias produtoras de aço e de refratários por fornecer subsídio técnico e científico para fundamentar alterações em refratários já existentes e colaborar com o desenvolvimento de novos refratários de engenharia com elevado desempenho e maior vida útil.
Resumo:
Continuous casting is a casting process that produces steel slabs in a continuous manner with steel being poured at the top of the caster and a steel strand emerging from the mould below. Molten steel is transferred from the AOD converter to the caster using a ladle. The ladle is designed to be strong and insulated. Complete insulation is never achieved. Some of the heat is lost to the refractories by convection and conduction. Heat losses by radiation also occur. It is important to know the temperature of the melt during the process. For this reason, an online model was previously developed to simulate the steel and ladle wall temperatures during the ladle cycle. The model was developed as an ODE based model using grey box modeling technique. The model’s performance was acceptable and needed to be presented in a user friendly way. The aim of this thesis work was basically to design a GUI that presents steel and ladle wall temperatures calculated by the model and also allow the user to make adjustments to the model. This thesis work also discusses the sensitivity analysis of different parameters involved and their effects on different temperature estimations.
Resumo:
The use of ceramic material as refractories in the manufacturing industry is a common practice worldwide. During usage, for example in the production of steel, these materials do experience severe working conditions including high temperatures, low pressures and corrosive environments. This results in lowered service lives and high consumptions of these materials. This, in turn, affects the productivity of the whole steel plant and thereby the cost. In order to investigate how the service life can be improved, studies have been carried out for refractories used in the inner lining of the steel ladles. More specifically, from the slag zone, where the corrosion is most severe. By combining thermodynamic simulations, plant trails and post-mortem studies of the refractories after service, vital information about the behaviour of the slagline refractories during steel refining and the causes of the accelerated wear in this ladle area has been achieved. The results from these studies show that the wear of the slagline refractories of the ladle is initiated at the preheating station, through reduction-oxidation reactions. The degree of the decarburization process is mostly dependent on the preheating fuel or the environment. For refractories without antioxidants, refractory decarburization is slower when coal gas is used in ladle preheating than when a mixture of oil and air is used. In addition, ladle preheating of the refractories without antioxidants leads to direct wear of the slagline refractories. This is due to the total loss of the matrix strength, which results in a sand-like product. Thermal chemical changes that take place in the slagline refractories are due to the MgO-C reaction as well as the formation of liquid phases from impurity oxides. In addition, the decrease in the system pressure during steel refining makes the MgO-C reaction take place at the steel refining temperatures. This reduces the refractory’s resistance to corrosion. This is a serious problem for both the magnesia-carbon and dolomite-carbon refractories. The studies of the reactions between the slagline refractories and the different slag compositions showed that slags rich in iron oxide lead mostly to the oxidation of carbon/graphite in the carbon-containing refractories. This leads to an increased porosity and wettability and therefore an enhanced penetration of slag into the refractory structure. If the slag contains high contents of alumina and or silica (such as the steel refining slag), reactions between the slag components and the dolomite-carbon refractory are promoted. This leads to the formation of low-temperature melting phases such as calcium-aluminates and silicates. The state of these reaction products during steel refining leads to an accelerated wear of the dolomite-carbon refractory. The main products of the reactions between the magnesia-carbon refractory and the steel refining slag are MgAl2O4 spinels, and calcium-aluminates, and silicates. Due to the good refractory properties of MgAl2O4 spinels, the slag corrosion resistance of the magnesiacarbon refractory is promoted.
Resumo:
Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modern buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behaviour in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modern residential buildings are proposed for the testing of LSF walls.
Resumo:
Cold-formed steel wall frame systems using lipped or unlipped C-sections and gypsum plasterboard lining are commonly utilised in the construction of both the load bearing and non-load bearing walls in the residential, commercial and industrial buildings. However, the structural behaviour of unlined and lined stud wall frames is not well understood and adequate design rules are not available. A detailed research program was therefore undertaken to investigate the behaviour of stud wall frame systems. As the first step in this research, the problem relating to the degree of end fixity of stud was investigated. The studs are usually connected to the top and bottom tracks and the degree of end fixity provided by these tracks is not adequately addressed by the design codes. A finite element model of unlined frames was therefore developed, and validated using full scale experimental results. It was then used in a detailed parametric study to develop appropriate design rules for unlined wall frames. This study has shown that by using appropriate effective length factors, the ultimate load and failure modes of the unlined studs can be accurately predicted using the provisions of Australian or American cold-formed steel structures design codes. This paper presents the details of the finite element analyses, the results and recommended design rules for unlined wall frames.
Resumo:
The aim of this work is to study the evolution of the corrosion rate of reinforcements embedded in mortar specimens that have been partly or fully replaced by the sand ladle furnace white slag. Prisms are manufactured mortar 6cm x 8cm x 2cm in which are embedded reinforcing steel bars of 6mm diameter B500SD. At the time of mixing were added varying amounts of chloride ion content by weight of cement (0%, 0.4%, 0.8%, 1.2%, 2%). The specimens were made totally or partially replacing the white slag, getting four different mixes depending on the degree of substitution. After curing the specimens for 28 days in moist chambers proceeded to dry up naturally. Here are gradually dampened by its conservation in a moist chamber, periodically measuring the corrosion rate of the bars using the technique of polarization curve. The results, in terms of corrosion current and corrosion potential, were compared with those obtained on standard samples, without replacement by slag aggregate. The analysis of results allows us to know, depending on the type of mortar used, the chloride threshold with the depassivation produced steel and the corrosion rates achieved in steels in the active state in terms of mortar moisture, obtained from qualitatively using gravimetric techniques. The results achieved to date support the conclusion that no significant differences in the behavior against corrosion induced by chloride ions, between the steel bars embedded in standard samples and the steel bars embedded in samples including with aggregates from slag. Both the chloride threshold resulting in the depassivation steel as the corrosion rate reached through the bars in an active state are very similar in both types of mortars when they have the same moisture content.
Resumo:
Table on lining-paper.