992 resultados para Steel fiber
Resumo:
Several methods are available for predicting flexural strength of steel fiber concrete composites. In these methods, direct tensile strength, split cylinder strength, and cube strength are the basic engineering parameters that must be determined to predict the flexural strength of such composites. Various simplified forms of stress distribution are used in each method to formulate the prediction equations for flexural strength. In this paper, existing methods are reviewed and compared, and a modified empirical approach is developed to predict the flexural strength of fiber concrete composites. The direct tensile strength of the composite is used as the basic parameter in this approach. Stress distribution is established from the findings of flexural tests conducted as part of this investigation on fiber concrete prisms. A comparative study of the test values of an earlier investigation on fiber concrete slabs and the computed values from existing methods, including the one proposed, is presented.
Resumo:
The interest of HACFRA (self compacting concrete reinforced with steel fibers), is the combination of the residual strength increase and cracking decrease compared to plain concrete by the introduction of steel fibers in the mass with the advantages of the self-compacting. The paper presents an analysis of the influence of different components of the HACRFA and provides their selection, refered to the granular skeleton and to different steel fiber types and amount, in order to obtain an optimization of its features and structural behavior.
Resumo:
Beneficial effects on bone-implant bonding may accrue from ferromagnetic fiber networks on implants which can deform in vivo inducing controlled levels of mechanical strain directly in growing bone. This approach requires ferromagnetic fibers that can be implanted in vivo without stimulating undue inflammatory cell responses or cytotoxicity. This study examines the short-term in vitro responses, including attachment, viability, and inflammatory stimulation, of human peripheral blood monocytes to 444 ferritic stainless steel fiber networks. Two types of 444 networks, differing in fiber cross section and thus surface area, were considered alongside austenitic stainless steel fiber networks, made of 316L, a widely established implant material. Similar high percent seeding efficiencies were measured by CyQuant® on all fiber networks after 48 h of cell culture. Extensive cell attachment was confirmed by fluorescence and scanning electron microscopy, which showed round monocytes attached at various depths into the fiber networks. Medium concentrations of lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-α) were determined as indicators of viability and inflammatory responses, respectively. Percent LDH concentrations were similar for both 444 fiber networks at all time points, whereas significantly lower than those of 316L control networks at 24 h. All networks elicited low-level secretions of TNF-α, which were significantly lower than that of the positive control wells containing zymosan. Collectively, the results indicate that 444 networks produce comparable responses to medical implant grade 316L networks and are able to support human peripheral blood monocytes in short-term in vitro cultures without inducing significant inflammatory or cytotoxic effects.
Resumo:
The use of a porous coating on prosthetic components to encourage bone ingrowth is an important way of improving uncemented implant fixation. Enhanced fixation may be achieved by the use of porous magneto-active layers on the surface of prosthetic implants, which would deform elastically on application of a magnetic field, generating internal stresses within the in-growing bone. This approach requires a ferromagnetic material able to support osteoblast attachment, proliferation, differentiation, and mineralization. In this study, the human osteoblast responses to ferromagnetic 444 stainless steel networks were considered alongside those to nonmagnetic 316L (medical grade) stainless steel networks. While both networks had similar porosities, 444 networks were made from coarser fibers, resulting in larger inter-fiber spaces. The networks were analyzed for cell morphology, distribution, proliferation, and differentiation, extracellular matrix production and the formation of mineralized nodules. Cell culture was performed in both the presence of osteogenic supplements, to encourage cell differentiation, and in their absence. It was found that fiber size affected osteoblast morphology, cytoskeleton organization and proliferation at the early stages of culture. The larger inter-fiber spaces in the 444 networks resulted in better spatial distribution of the extracellular matrix. The addition of osteogenic supplements enhanced cell differentiation and reduced cell proliferation thereby preventing the differences in proliferation observed in the absence of osteogenic supplements. The results demonstrated that 444 networks elicited favorable responses from human osteoblasts, and thus show potential for use as magnetically active porous coatings for advanced bone implant applications. © 2012 Wiley Periodicals, Inc.
Resumo:
Adoption of a sintered stainless steel fiber felt was evaluated as gas diffusion backing in air-breathing direct methanol fuel cell (DMFC). By using a sintered stainless steel fiber felt as an anodic gas diffusion backing, the peak power density of an air-breathing DMFC is 24 mW cm(-2), which is better than that of common carbon paper. A 30-h-life test indicates that the degraded performance of the air-breathing DMFC is primarily due to the water flooding of the cathode. Twelve unit cells with each has 6 cm(2) of active area are connected in series to supply the power to a mobile phone assisted by a constant voltage diode. The maximum power density of 26 mW cm(-2) was achieved in the stack, which is higher than that in single cell. The results show that the sintered stainless steel felt is a promising solution to gas diffusion backing in the air-breathing DMFC, especially in the anodic side because of its high electronical conductivity and hydrophilicity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compressive strength, Young's modulus (stiffness), stress-strain curve and energy absorption capacity (toughness). The effects of two parameters, namely steel fiber volume content (0%, 0.5%, 1%, 1.5%) and temperature (room temperature, 200 °C, 400 °C and 600 °C) on the compressive mechanical properties of concrete were investigated. The test results show that both compressive strength and stiffness of the concrete are significantly reduced after exposure to high temperatures. The addition of steel fibers is helpful in preventing spalling, and significantly improves the ductility and the cracking behavior of recycled aggregate concrete (RAC) after exposure to high temperatures, which is favorable for the application of RAC in building construction.
Resumo:
This paper presents the results from an experimental program and an analytical assessment of the influence of addition of fibers on mechanical properties of concrete. Models derived based on the regression analysis of 60 test data for various mechanical properties of steel fiber-reinforced concrete have been presented. The various strength properties studied are cube and cylinder compressive strength, split tensile strength, modulus of rupture and postcracking performance, modulus of elasticity, Poisson’s ratio, and strain corresponding to peak compressive stress. The variables considered are grade of concrete, namely, normal strength 35 MPa , moderately high strength 65 MPa , and high-strength concrete 85 MPa , and the volume fraction of the fiber Vf =0.0, 0.5, 1.0, and 1.5% . The strength of steel fiber-reinforced concrete predicted using the proposed models have been compared with the test data from the present study and with various other test data reported in the literature. The proposed model predicted the test data quite accurately. The study indicates that the fiber matrix interaction contributes significantly to enhancement of mechanical properties caused by the introduction of fibers, which is at variance with both existing models and formulations based on the law of mixtures
Resumo:
This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP). Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test"), the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.
Resumo:
Ultra-high performance fiber reinforced concrete (UHPFRC) has arisen from the implementation of a variety of concrete engineering and materials science concepts developed over the last century. This material offers superior strength, serviceability, and durability over its conventional counterparts. One of the most important differences for UHPFRC over other concrete materials is its ability to resist fracture through the use of randomly dispersed discontinuous fibers and improvements to the fiber-matrix bond. Of particular interest is the materials ability to achieve higher loads after first crack, as well as its high fracture toughness. In this research, a study of the fracture behavior of UHPFRC with steel fibers was conducted to look at the effect of several parameters related to the fracture behavior and to develop a fracture model based on a non-linear curve fit of the data. To determine this, a series of three-point bending tests were performed on various single edge notched prisms (SENPs). Compression tests were also performed for quality assurance. Testing was conducted on specimens of different cross-sections, span/depth (S/D) ratios, curing regimes, ages, and fiber contents. By comparing the results from prisms of different sizes this study examines the weakening mechanism due to the size effect. Furthermore, by employing the concept of fracture energy it was possible to obtain a comparison of the fracture toughness and ductility. The model was determined based on a fit to P-w fracture curves, which was cross referenced for comparability to the results. Once obtained the model was then compared to the models proposed by the AFGC in the 2003 and to the ACI 544 model for conventional fiber reinforced concretes.
Resumo:
An experimental study aimed at understanding the deformational behavior of conventionally reinforced steel fiber concrete beams in pure bending is reported in this paper. One group of beams has steel fibers dispersed in the entire volume of the beam and the second has fibers dispersed over half the depth of the beam on the tension side. A comparative study of the deformational characteristics of these beams has been made. Half-depth fiber inclusion, requiring only half the quantity of fibers of full-depth inclusion, is found to be equally effective in improving the deformational behavior of beams. Thus, by such modes of inclusion of fibers, an economical and efficient use of expensive steel fibers can be realized.
Resumo:
matlab functions for the validation of push-off tests results
Resumo:
FRAME3D, a program for the nonlinear seismic analysis of steel structures, has previously been used to study the collapse mechanisms of steel buildings up to 20 stories tall. The present thesis is inspired by the need to conduct similar analysis for much taller structures. It improves FRAME3D in two primary ways.
First, FRAME3D is revised to address specific nonlinear situations involving large displacement/rotation increments, the backup-subdivide algorithm, element failure, and extremely narrow joint hysteresis. The revisions result in superior convergence capabilities when modeling earthquake-induced collapse. The material model of a steel fiber is also modified to allow for post-rupture compressive strength.
Second, a parallel FRAME3D (PFRAME3D) is developed. The serial code is optimized and then parallelized. A distributed-memory divide-and-conquer approach is used for both the global direct solver and element-state updates. The result is an implicit finite-element hybrid-parallel program that takes advantage of the narrow-band nature of very tall buildings and uses nearest-neighbor-only communication patterns.
Using three structures of varied sized, PFRAME3D is shown to compute reproducible results that agree with that of the optimized 1-core version (displacement time-history response root-mean-squared errors are ~〖10〗^(-5) m) with much less wall time (e.g., a dynamic time-history collapse simulation of a 60-story building is computed in 5.69 hrs with 128 cores—a speedup of 14.7 vs. the optimized 1-core version). The maximum speedups attained are shown to increase with building height (as the total number of cores used also increases), and the parallel framework can be expected to be suitable for buildings taller than the ones presented here.
PFRAME3D is used to analyze a hypothetical 60-story steel moment-frame tube building (fundamental period of 6.16 sec) designed according to the 1994 Uniform Building Code. Dynamic pushover and time-history analyses are conducted. Multi-story shear-band collapse mechanisms are observed around mid-height of the building. The use of closely-spaced columns and deep beams is found to contribute to the building's “somewhat brittle” behavior (ductility ratio ~2.0). Overall building strength is observed to be sensitive to whether a model is fracture-capable.