9 resultados para Stators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents an alternative approach to the analytical design of surface-mounted axialflux permanent-magnet machines. Emphasis has been placed on the design of axial-flux machines with a one-rotor-two-stators configuration. The design model developed in this study incorporates facilities to include both the electromagnetic design and thermal design of the machine as well as to take into consideration the complexity of the permanent-magnet shapes, which is a typical requirement for the design of high-performance permanent-magnet motors. A prototype machine with rated 5 kW output power at 300 min-1 rotation speed has been designed and constructed for the purposesof ascertaining the results obtained from the analytical design model. A comparative study of low-speed axial-flux and low-speed radial-flux permanent-magnet machines is presented. The comparative study concentrates on 55 kW machines with rotation speeds 150 min-1, 300 min-1 and 600 min-1 and is based on calculated designs. A novel comparison method is introduced. The method takes into account the mechanical constraints of the machine and enables comparison of the designed machines, with respect to the volume, efficiency and cost aspects of each machine. It is shown that an axial-flux permanent-magnet machine with one-rotor-two-stators configuration has generally a weaker efficiency than a radial-flux permanent-magnet machine if for all designs the same electric loading, air-gap flux density and current density have been applied. On the other hand, axial-flux machines are usually smaller in volume, especially when compared to radial-flux machines for which the length ratio (axial length of stator stack vs. air-gap diameter)is below 0.5. The comparison results show also that radial-flux machines with alow number of pole pairs, p < 4, outperform the corresponding axial-flux machines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This bachelor’s thesis is a part of the research project realized in the summer 2011 in Lappeenranta University of Technology. The goal of the project was to create an automation concept for controlling an electrically excited synchronous motor. This thesis concentrates on the setup and requirements specification part of the concept. The setup consists of ABB AC500 as the PLC master device, DCS800 as an exciter and ACS800 as a frequency converter. The ACS800 frequency converter uses permanent magnet synchronous machine software to control the stator’s magnetic field, the DC drive handles the excitation and the AC500 PLC master controls the communication and functionality of the system. The requirements specification briefly explains the general over-view of the concept, the use and functionality of the PLC program and the requirements needed for the whole concept and the PLC program to work as intended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flagellate bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium typically express 5 to 12 flagellar filaments over their cell surface that rotate in clockwise (CW) and counterclockwise directions. These bacteria modulate their swimming direction towards favorable environments by biasing the direction of flagellar rotation in response to various stimuli. In contrast, Rhodobacter sphaeroides expresses a single subpolar flagellum that rotates only CW and responds tactically by a series of biased stops and starts. Rotor protein FliG transiently links the MotAB stators to the rotor, to power rotation and also has an essential function in flagellar export. In this study, we sought to determine whether the FliG protein confers directionality on flagellar motors by testing the functional properties of R. sphaeroides FliG and a chimeric FliG protein, EcRsFliG (N-terminal and central domains of E. coli FliG fused to an R. sphaeroides FliG C terminus), in an E. coli FliG null background. The EcRsFliG chimera supported flagellar synthesis and bidirectional rotation; bacteria swam and tumbled in a manner qualitatively similar to that of the wild type and showed chemotaxis to amino acids. Thus, the FliG C terminus alone does not confer the unidirectional stop-start character of the R. sphaeroides flagellar motor, and its conformation continues to support tactic, switch-protein interactions in a bidirectional motor, despite its evolutionary history in a bacterium with a unidirectional motor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviors of an arc-shaped stator induction machine (the sector-motor) and a disc-secondary linear induction motor are analyzed in this work for different values of the frequency. Variable frequency is produced by a voltage source controlled-current inverter which keeps constant the r.m.s. value of the phase current, also assuring a sinusoidal waveform. For the simulations of the machine developed thrust, an equivalent circuit is used. It is obtained through the application of the one-dimensional theory to the modeling. The circuit parameters take into account the end effects, always present is these kind of machines. The phase current waveforms are analyzed for their harmonic contents. Experimental measurements were carried out in laboratory and are presented with the simulations, for comparison.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os geradores síncronos se submetem a diferentes situações de paradas para desligamento forçado, desligamento por condições externas, desligamento programado para manutenção corretiva e preventiva. As diferentes variações de temperatura em que se submete o gerador síncrono, precisamente, ao seu estator, afeta o seu isolamento, que não acompanha essas constantes variações, devido ter um coeficiente de dilatação diferente. No presente trabalho busca-se identificar uma tendência de progressão do envelhecimento do isolamento de seus enrolamentos estatóricos em máquinas que sofrem repetitivas partidas e paradas e que ficam com sua reserva de energia desligada por muitas horas. O estudo foi aplicado nos cinco geradores síncronos da usina hidrelétrica de Balbina, pertencente ao grupo Eletrobrás, que apresenta tal problema. Esse estudo vem comprovar os ensaios de análise de descargas parciais dos geradores síncronos realizados periodicamente para diagnosticar problemas nos seus enrolamentos estatóricos que apresentam diferentes magnitudes e confirmar a hipótese de que máquinas que apresentam maiores magnitudes de descargas parciais em seus estatores são as que se submetem maiores quantidades de partidas e paradas e horas com energia de reserva desligada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direct drive point absorber is a robust and efficient system for wave energy harvesting, where the linear generator represents the most complex part of the system. Therefore, its design and optimization are crucial tasks. The tubular shape of a linear generator’s magnetic circuit offers better permanent magnet flux encapsulation and reduction in radial forces on the translator due to its symmetry. A double stator topology can improve the power density of the linear tubular machine. Common designs employ a set of aligned stators on each side of a translator with radially magnetized permanent magnets. Such designs require doubling the amount of permanent magnet material and lead to an increase in the cogging force. The design presented in this thesis utilizes a translator with buried axially magnetized magnets and axially shifted positioning of the two stators such that no additional magnetic material, compared to single side machine, is required. In addition to the conservation of magnetic material, a significant improvement in the cogging force occurs in the two phase topology, while the double sided three phase system produces more power at the cost of a small increase in the cogging force. The analytical and the FEM models of the generator are described and their results compared to the experimental results. In general, the experimental results compare favourably with theoretical predictions. However, the experimentally observed permanent magnet flux leakage in the double sided machine is larger than predicted theoretically, which can be justified by the limitations in the prototype fabrication and resulting deviations from the theoretical analysis.