860 resultados para Statistical theory and methods
Resumo:
Mode of access: Internet.
Resumo:
"AEC Contract AT930-1)-2137."
Resumo:
Bibliographical footnotes. Bibliography: p. 360.
Resumo:
The aim of the present study was to test a hypothetical model to examine if dispositional optimism exerts a moderating or a mediating effect between personality traits and quality of life, in Portuguese patients with chronic diseases. A sample of 540 patients was recruited from central hospitals in various districts of Portugal. All patients completed self-reported questionnaires assessing socio-demographic and clinical variables, personality, dispositional optimism, and quality of life. Structural equation modeling (SEM) was used to analyze the moderating and mediating effects. Results suggest that dispositional optimism exerts a mediator rather than a moderator role between personality traits and quality of life, suggesting that “the expectation that good things will happen” contributes to a better general well-being and better mental functioning.
Resumo:
This thesis provides a thoroughly theoretical background in network theory and shows novel applications to real problems and data. In the first chapter a general introduction to network ensembles is given, and the relations with “standard” equilibrium statistical mechanics are described. Moreover, an entropy measure is considered to analyze statistical properties of the integrated PPI-signalling-mRNA expression networks in different cases. In the second chapter multilayer networks are introduced to evaluate and quantify the correlations between real interdependent networks. Multiplex networks describing citation-collaboration interactions and patterns in colorectal cancer are presented. The last chapter is completely dedicated to control theory and its relation with network theory. We characterise how the structural controllability of a network is affected by the fraction of low in-degree and low out-degree nodes. Finally, we present a novel approach to the controllability of multiplex networks
Resumo:
A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.
Resumo:
Discussion opposing the Theory of the Firm to the Theory of Stakeholders are contemporaneous and polemical. One focal point of such debates refers to which objective-function companies, should choose, whether that of the shareholders or that of the stakeholders, and whether it is possible to opt for both simultaneously. Several empirical studies. have attempted-to test a possible correlation between both functions, and there has not been any consensus-so far. The objective of the present research is to examine a gap in such discussions: is there (or not) a subordination of the stakeholders` objective-function to that of the shareholders? The research is empirical,and analytical and employs quantitative methods. Hypotheses were tested and data analyzed by using non-parametrical (chi-square test) and parametrical procedures (frequency. correlation `coefficient). Secondary data was collected from he Economitica database and from the Brazilian Institute of Social and-Economic Analyses (IBASE) website, relative to public companies that have published their Social Balance Statements following the IBASE model from 1999 to 2006, whose sample amounted to 65 companies; In order to assess the objective-function of shareholders a proxy was created based on the following three indices: ROE (return on equity), EnterpriseValue and Tobin`s Q. In order to assess the objective-function of stakeholders a proxy was created by employing the following IBASE social balance indices: internal ones (ISI), external ones (ISE), and environmental ones (IAM). The results have shown no evidence of subordination of stakeholders` objective-function to that of the shareholders in analyzed companies, negating initial expectations and calling for deeper investigation of results. Its main conclusion, which states that the attempted subordination does not take place, is limited to the sample herein investigated and calls for ongoing research aiming at improvements which may lead to sample enlargement and, as a consequence, may make feasible the application of other statistical techniques which may yield a more thorough, analysis of the studied phenomehon.
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.