996 resultados para Statistical maps.
Resumo:
Bibliography: p. 59-60.
Resumo:
Despite substantial progress in measuring the 3D profile of anatomical variations in the human brain, their genetic and environmental causes remain enigmatic. We developed an automated system to identify and map genetic and environmental effects on brain structure in large brain MRI databases . We applied our multi-template segmentation approach ("Multi-Atlas Fluid Image Alignment") to fluidly propagate hand-labeled parameterized surface meshes into 116 scans of twins (60 identical, 56 fraternal), labeling the lateral ventricles. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps revealed 3D heritability patterns, and their significance, with and without adjustments for global brain scale. These maps visualized detailed profiles of environmental versus genetic influences on the brain, extending genetic models to spatially detailed, automatically computed, 3D maps.
Resumo:
Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.
Resumo:
Despite substantial progress in measuring the anatomical and functional variability of the human brain, little is known about the genetic and environmental causes of these variations. Here we developed an automated system to visualize genetic and environmental effects on brain structure in large brain MRI databases. We applied our multi-template segmentation approach termed "Multi-Atlas Fluid Image Alignment" to fluidly propagate hand-labeled parameterized surface meshes, labeling the lateral ventricles, in 3D volumetric MRI scans of 76 identical (monozygotic, MZ) twins (38 pairs; mean age = 24.6 (SD = 1.7)); and 56 same-sex fraternal (dizygotic, DZ) twins (28 pairs; mean age = 23.0 (SD = 1.8)), scanned as part of a 5-year research study that will eventually study over 1000 subjects. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps, derived from path analysis, revealed patterns of heritability, and their significance, in 3D. Path coefficients for the 'ACE' model that best fitted the data indicated significant contributions from genetic factors (A = 7.3%), common environment (C = 38.9%) and unique environment (E = 53.8%) to lateral ventricular volume. Earlier-maturing occipital horn regions may also be more genetically influenced than later-maturing frontal regions. Maps visualized spatially-varying profiles of environmental versus genetic influences. The approach shows promise for automatically measuring gene-environment effects in large image databases.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response. © 2007 Elsevier Inc. All rights reserved.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles, designed for monitoring degenerative disease effects in clinical neuroscience studies and drug trials. First we used a set of parameterized surfaces to represent the ventricles in a manually labeled set of 9 subjects' MRIs (atlases). We fluidly registered each of these atlases and mesh models to a set of MRIs from 12 Alzheimer's disease (AD) patients and 14 matched healthy elderly subjects, and we averaged the resulting meshes for each of these images. Validation experiments on expert segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease-related alterations monotonically improved as the number of atlases, N, was increased from 1 to 9. We then combined the segmentations with a radial mapping approach to localize ventricular shape differences in patients. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases, and we formulated a statistical stopping criterion to determine the optimal value of N. Anterior horn anomalies in Alzheimer's patients were only detected with the multi-atlas segmentation, which clearly outperformed the standard single-atlas approach.
Resumo:
Control of iron homeostasis is essential for healthy central nervous system function: iron deficiency is associated with cognitive impairment, yet iron overload is thought to promote neurodegenerative diseases. Specific genetic markers have been previously identified that influence levels of transferrin, the protein that transports iron throughout the body, in the blood and brain. Here, we discovered that transferrin levels are related to detectable differences in the macro- and microstructure of the living brain. We collected brain MRI scans from 615 healthy young adult twins and siblings, of whom 574 were also scanned with diffusion tensor imaging at 4 Tesla. Fiber integrity was assessed by using the diffusion tensor imaging-based measure of fractional anisotropy. In bivariate genetic models based on monozygotic and dizygotic twins, we discovered that partially overlapping additive genetic factors influenced transferrin levels and brain microstructure. We also examined common variants in genes associated with transferrin levels, TF and HFE, and found that a commonly carried polymorphism (H63D at rs1799945) in the hemochromatotic HFE gene was associated with white matter fiber integrity. This gene has a well documented association with iron overload. Our statistical maps reveal previously unknown influences of the same gene on brain microstructure and transferrin levels. This discovery may shed light on the neural mechanisms by which iron affects cognition, neurodevelopment, and neurodegeneration.
Resumo:
The weather and climate has a direct influence in agriculture, it affects all stages of farming, since soil preparation to harvest. Meteorological data derived from automatic or conventional weather stations are used to monitor these effects. These meteorological data has problems like difficulty of data access and low density of meteorological stations in Brazil. Meteorological data from atmospheric models, such as ECMWF (European Center for Medium-Range Weather Forecast) can be an alternative. Thus, the aim of this study was to compare 10-day period precipitation, maximum and minimum air temperature data from the ECMWF model with interpolated maps from 33 weather stations in Sao Paulo state between 2005 and 2010 and generate statistical maps pixel by pixel. Statistical index showed spatially satisfactory (most of the results with R 2 > 0.60, d > 0.7, RMSE < 5°C and < 50 mm; Es < 5°C and < 24 mm) in period and ECMWF model can be recommended for use in the Sao Paulo state.
Resumo:
The occurrence of white matter (WM) abnormalities in psychotic disorders has been suggested by several studies investigating brain pathology and diffusion tensor measures, but evidence assessing regional WM morphometry is still scarce and conflicting. In the present study, 122 individuals with first-episode psychosis (FEP) (62 fulfilling criteria for schizophrenia/schizophreniform disorder, 26 psychotic bipolar I disorder, and 20 psychotic major depressive disorder) underwent magnetic resonance imaging, as well as 94 epidemiologically recruited controls. Images were processed with the Statistical Parametric Mapping (SPM2) package, and voxel-based morphometry was used to compare groups (t-test) and subgroups (ANOVA). Initially, no regional WM abnormalities were observed when both groups (overall FEP group versus controls) and subgroups (i.e., schizophrenia/schizophreniform, psychotic bipolar I disorder, psychotic depression, and controls) were compared. However, when the voxelwise analyses were repeated excluding subjects with comorbid substance abuse or dependence, the resulting statistical maps revealed a focal volumetric reduction in right frontal WM, corresponding to the right middle frontal gyral WM/third subcomponent of the superior longitudinal fasciculus, in subjects with schizophrenia/schizophreniform disorder (n = 40) relative to controls (n = 89). Our results suggest that schizophrenia/schizophreniform disorder is associated with right frontal WM volume decrease at an early course of the illness. (c) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Antisocial and violent behaviour have been associated with both structural and functional brain abnormalities in the frontal and the temporal lobes. The aim of the present study was to assess cortical thickness in offenders undergoing forensic psychiatric assessments, one group with psychopathy (PSY, n=7) and one group with autism spectrum disorder (ASD, n=7) compared to each other as well as to a reference group consisting of healthy non-criminal subjects (RG, n=12). A second aim was to assess correlation between scores on a psychopathy checklist (PCL-SV) and cortical thickness. Magnetic resonance imaging (MRI) and surface-based cortical segmentation were used to calculate cortical thickness. Analyses used both regions of interest and statistical maps. When the two groups of offenders were compared, there were no differences in cortical thickness, but the PSY group had thinner cortex in the temporal lobes and in the whole right hemisphere compared to RG. There were no differences in cortical thickness between the ASD group and RG. Across subjects there was a negative correlation between PCL-SV scores and cortical thickness in the temporal lobes and the whole right hemisphere. The findings indicate that thinner cortex in the temporal lobes is present in psychopathic offenders and that these regions are important for the expression of psychopathy. However, whether thinner temporal cortex is a cause or a consequence of the antisocial behaviour is still unknown.
Resumo:
While voxel-based 3-D MRI analysis methods as well as assessment of subtracted ictal versus interictal perfusion studies (SISCOM) have proven their potential in the detection of lesions in focal epilepsy, a combined approach has not yet been reported. The present study investigates if individual automated voxel-based 3-D MRI analyses combined with SISCOM studies contribute to an enhanced detection of mesiotemporal epileptogenic foci. Seven consecutive patients with refractory complex partial epilepsy were prospectively evaluated by SISCOM and voxel-based 3-D MRI analysis. The functional perfusion maps and voxel-based statistical maps were coregistered in 3-D space. In five patients with temporal lobe epilepsy (TLE), the area of ictal hyperperfusion and corresponding structural abnormalities detected by 3-D MRI analysis were identified within the same temporal lobe. In two patients, additional structural and functional abnormalities were detected beyond the mesial temporal lobe. Five patients with TLE underwent epileptic surgery with favourable postoperative outcome (Engel class Ia and Ib) after 3-5 years of follow-up, while two patients remained on conservative treatment. In summary, multimodal assessment of structural abnormalities by voxel-based analysis and SISCOM may contribute to advanced observer-independent preoperative assessment of seizure origin.
Resumo:
http://www.archive.org/details/encyclopaediamis02unknuoft
Resumo:
INTRODUCTION: Visual analysis is widely used to interpret regional cerebral blood flow (rCBF) SPECT images in clinical practice despite its limitations. Automated methods are employed to investigate between-group rCBF differences in research Studies but have rarely been explored in individual analyses.OBJECTIVES: To compare visual inspection by nuclear physicians with the automated statistical parametric mapping program using a SPECT dataset of patients with neurological disorders and normal control images.METHODS: Using statistical parametric mapping, 14 SPECT images from patients with various neurological disorders were compared individually with a databank of 32 normal images using a statistical threshold of p<0.05 (corrected for multiple comparisons at the level of individual voxels or clusters). Statistical parametric mapping results were compared with Visual analyses by a nuclear physician highly experienced in neurology (A) as well as a nuclear physician with a general background of experience (B) who independently classified images as normal or altered, and determined the location of changes and the severity.RESULTS: of the 32 images of the normal databank, 4 generated maps showing rCBF abnormalities (p<0.05, corrected). Among the 14 images from patients with neurological disorders, 13 showed rCBF alterations. Statistical parametric mapping and physician A completely agreed on 84.37% and 64.28% of cases from the normal databank and neurological disorders, respectively. The agreement between statistical parametric mapping and ratings of physician B were lower (71.18% and 35.71%, respectively).CONCLUSION: Statistical parametric mapping replicated the findings described by the more experienced nuclear physician. This finding suggests that automated methods for individually analyzing rCBF SPECT images may be a valuable resource to complement visual inspection in clinical practice.
Resumo:
Mode of access: Internet.