856 resultados para Statistical Learning Theory.
Resumo:
Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.
Resumo:
Background: In order to design appropriate environments for performance and learning of movement skills, physical educators need a sound theoretical model of the learner and of processes of learning. In physical education, this type of modelling informs the organization of learning environments and effective and efficient use of practice time. An emerging theoretical framework in motor learning, relevant to physical education, advocates a constraints-led perspective for acquisition of movement skills and game play knowledge. This framework shows how physical educators could use task, performer and environmental constraints to channel acquisition of movement skills and decision making behaviours in learners. From this viewpoint, learners generate specific movement solutions to satisfy the unique combination of constraints imposed on them, a process which can be harnessed during physical education lessons. Purpose: In this paper the aim is to provide an overview of the motor learning approach emanating from the constraints-led perspective, and examine how it can substantiate a platform for a new pedagogical framework in physical education: nonlinear pedagogy. We aim to demonstrate that it is only through theoretically valid and objective empirical work of an applied nature that a conceptually sound nonlinear pedagogy model can continue to evolve and support research in physical education. We present some important implications for designing practices in games lessons, showing how a constraints-led perspective on motor learning could assist physical educators in understanding how to structure learning experiences for learners at different stages, with specific focus on understanding the design of games teaching programmes in physical education, using exemplars from Rugby Union and Cricket. Findings: Research evidence from recent studies examining movement models demonstrates that physical education teachers need a strong understanding of sport performance so that task constraints can be manipulated so that information-movement couplings are maintained in a learning environment that is representative of real performance situations. Physical educators should also understand that movement variability may not necessarily be detrimental to learning and could be an important phenomenon prior to the acquisition of a stable and functional movement pattern. We highlight how the nonlinear pedagogical approach is student-centred and empowers individuals to become active learners via a more hands-off approach to learning. Summary: A constraints-based perspective has the potential to provide physical educators with a framework for understanding how performer, task and environmental constraints shape each individual‟s physical education. Understanding the underlying neurobiological processes present in a constraints-led perspective to skill acquisition and game play can raise awareness of physical educators that teaching is a dynamic 'art' interwoven with the 'science' of motor learning theories.
Resumo:
A classical condition for fast learning rates is the margin condition, first introduced by Mammen and Tsybakov. We tackle in this paper the problem of adaptivity to this condition in the context of model selection, in a general learning framework. Actually, we consider a weaker version of this condition that allows one to take into account that learning within a small model can be much easier than within a large one. Requiring this “strong margin adaptivity” makes the model selection problem more challenging. We first prove, in a general framework, that some penalization procedures (including local Rademacher complexities) exhibit this adaptivity when the models are nested. Contrary to previous results, this holds with penalties that only depend on the data. Our second main result is that strong margin adaptivity is not always possible when the models are not nested: for every model selection procedure (even a randomized one), there is a problem for which it does not demonstrate strong margin adaptivity.
Resumo:
This chapter argues for the need to restructure children’s statistical experiences from the beginning years of formal schooling. The ability to understand and apply statistical reasoning is paramount across all walks of life, as seen in the variety of graphs, tables, diagrams, and other data representations requiring interpretation. Young children are immersed in our data-driven society, with early access to computer technology and daily exposure to the mass media. With the rate of data proliferation have come increased calls for advancing children’s statistical reasoning abilities, commencing with the earliest years of schooling (e.g., Langrall et al. 2008; Lehrer and Schauble 2005; Shaughnessy 2010; Whitin and Whitin 2011). Several articles (e.g., Franklin and Garfield 2006; Langrall et al. 2008) and policy documents (e.g., National Council of Teachers ofMathematics 2006) have highlighted the need for a renewed focus on this component of early mathematics learning, with children working mathematically and scientifically in dealing with realworld data. One approach to this component in the beginning school years is through data modelling (English 2010; Lehrer and Romberg 1996; Lehrer and Schauble 2000, 2007)...
Resumo:
This paper presents the results of a qualitative action-research inquiry into how a highly diverse cohort of post-graduate students could develop significant capacity in sustainable development within a single unit (course), in this case a compulsory component of four built environment masters programs. The method comprised applying threshold learning theory within the technical discipline of sustainable development, to transform student understanding of sustainable business practice in the built environment. This involved identifying a number of key threshold concepts, which once learned would provide a pathway to having a transformational learning experience. Curriculum was then revised, to focus on stepping through these targeted concepts using a scaffolded, problem-based-learning approach. Challenges included a large class size of 120 students, a majority of international students, and a wide span of disciplinary backgrounds across the spectrum of built environment professionals. Five ‘key’ threshold learning concepts were identified and the renewed curriculum was piloted in Semester 2 of 2011. The paper presents details of the study and findings from a mixed-method evaluation approach through the semester. The outcomes of this study will be used to inform further review of the course in 2012, including further consideration of the threshold concepts. In future, it is anticipated that this case study will inform a framework for rapidly embedding sustainability within curriculum.
Resumo:
In this Thesis, we develop theory and methods for computational data analysis. The problems in data analysis are approached from three perspectives: statistical learning theory, the Bayesian framework, and the information-theoretic minimum description length (MDL) principle. Contributions in statistical learning theory address the possibility of generalization to unseen cases, and regression analysis with partially observed data with an application to mobile device positioning. In the second part of the Thesis, we discuss so called Bayesian network classifiers, and show that they are closely related to logistic regression models. In the final part, we apply the MDL principle to tracing the history of old manuscripts, and to noise reduction in digital signals.
Resumo:
This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT (N-1)(60)] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters (N-1)(60) and peck ground acceleration (a(max)/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.
Resumo:
Recent electrophysical data inspired the claim that dopaminergic neurons adapt their mismatch sensitivities to reflect variances of expected rewards. This contradicts reward prediction error theory and most basal ganglia models. Application of learning principles points to a testable alternative interpretation-of the same data-that is compatible with existing theory.
Resumo:
Statistical learning can be used to extract the words from continuous speech. Gómez, Bion, and Mehler (Language and Cognitive Processes, 26, 212–223, 2011) proposed an online measure of statistical learning: They superimposed auditory clicks on a continuous artificial speech stream made up of a random succession of trisyllabic nonwords. Participants were instructed to detect these clicks, which could be located either within or between words. The results showed that, over the length of exposure, reaction times (RTs) increased more for within-word than for between-word clicks. This result has been accounted for by means of statistical learning of the between-word boundaries. However, even though statistical learning occurs without an intention to learn, it nevertheless requires attentional resources. Therefore, this process could be affected by a concurrent task such as click detection. In the present study, we evaluated the extent to which the click detection task indeed reflects successful statistical learning. Our results suggest that the emergence of RT differences between within- and between-word click detection is neither systematic nor related to the successful segmentation of the artificial language. Therefore, instead of being an online measure of learning, the click detection task seems to interfere with the extraction of statistical regularities.
Resumo:
Since 1984 David Kolb’s Experiential Learning Theory (ELT) has been a leading influence in the development of learner-centred pedagogy in management and business. It forms the basis of Kolb’s own Learning Styles’ Inventory and those of other authors including Honey and Mumford (2000). It also provides powerful underpinning for the emphasis, nay insistence, on reflection as a way of learning and the use of reflective practice in the preparation of students for business and management and other professions. In this paper, we confirm that Kolb’s ELT is still the most commonly cited source used in relation to reflective practice. Kolb himself continues to propound its relevance to teaching and learning in general. However, we also review some of the criticisms that ELT has attracted over the years and advance new criticisms that challenge its relevance to higher education and its validity as a model for formal, intentional learning.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.