886 resultados para Statistic nonparametric
Resumo:
OBJETIVO: Investigar a relação entre força muscular e função motora, em pacientes com DMD, em um período de 4 anos consecutivos, a partir de avaliações semestrais. MÉTODO: A força muscular foi medida por meio de testes manuais e o cálculo por grupo muscular seguiu o proposto pelo Medical Research Council (MRC) e a função motora pelo método de Medida da Função Motora (MFM), em 43 pacientes (8-30 anos). Foi realizada uma análise descritiva e o teste de correlação de Spearman. Foram investigadas as relações entre pontuações totais e parciais da MRC e da MFM. RESULTADOS: O estudo evidenciou correlações classificadas de moderada a forte relação entre a força muscular e função motora, principalmente com o escore total da MFM e a dimensão D2 (musculatura axial e função motora proximal). Foi encontrada relação negativa moderada entre idade e essas variáveis. CONCLUSÃO: A perda progressiva da função motora tem relação direta e proporcional com a diminuição da força muscular. Quanto maior a idade do paciente, pior sua função motora e força muscular, fornecendo com essa informação, indicadores adicionais da progressão da doença
Resumo:
Nonparametric simple-contrast estimates for one-way layouts based on Hodges-Lehmann estimators for two samples and confidence intervals for all contrasts involving only two treatments are found in the literature.Tests for such contrasts are performed from the distribution of the maximum of the rank sum between two treatments. For random block designs, simple contrast estimates based on Hodges-Lehmann estimators for one sample are presented. However, discussions concerning the significance levels of more complex contrast tests in nonparametric statistics are not well outlined.This work aims at presenting a methodology to obtain p-values for any contrast types based on the construction of the permutations required by each design model using a C-language program for each design type. For small samples, all possible treatment configurations are performed in order to obtain the desired p-value. For large samples, a fixed number of random configurations are used. The program prompts the input of contrast coefficients, but does not assume the existence or orthogonality among them.In orthogonal contrasts, the decomposition of the value of the suitable statistic for each case is performed and it is observed that the same procedure used in the parametric analysis of variance can be applied in the nonparametric case, that is, each of the orthogonal contrasts has a chi(2) distribution with one degree of freedom. Also, the similarities between the p-values obtained for nonparametric contrasts and those obtained through approximations suggested in the literature are discussed.
Resumo:
In this note, we show that an extension of a test for perfect ranking in a balanced ranked set sample given by Li and Balakrishnan (2008) to the multi-cycle case turns out to be equivalent to the test statistic proposed by Frey et al. (2007). This provides an alternative interpretation and motivation for their test statistic.
Resumo:
This study determines whether the inclusion of low-cost airlines in a dataset of international and domestic airlines has an impact on the efficiency scores of so-called ‘prestigious’ purportedly ‘efficient’ airlines. This is because while many airline studies concern efficiency, none has truly included a combination of international, domestic and budget airlines. The present study employs the nonparametric technique of data envelopment analysis (DEA) to investigate the technical efficiency of 53 airlines in 2006. The findings reveal that the majority of budget airlines are efficient relative to their more prestigious counterparts. Moreover, most airlines identified as inefficient are so largely because of the overutilization of non-flight assets.
Resumo:
Certain statistic and scientometric features of articles published in the journal “International Research in Geographical and Environmental Education” are examined in this paper, for the period 1992-2009, by applying nonparametric statistics and Shannon’s entropy (diversity) formula. The main findings of this analysis are: a) after 2004 the research priorities of researchers in geographical and environmental education seem to have changed, b) “teacher education” has been the most recurrent theme throughout these 18 years, followed by “values & attitudes” and “inquiry & problem solving” c) the themes “GIS” and “Sustainability” were the most “stable” throughout the 18 years, meaning that they maintained their ranks as publication priorities more than other themes, d) citations of IRGEE increase annually, e) the average thematic diversity of articles published during the period 1992-2009 is 82.7% of the maximum thematic diversity (very high), meaning that the Journal has the capacity to attract a wide readership for the 10 themes it has successfully covered throughout the 18 years of its publication.
Resumo:
An algorithm for computing dense correspondences between images of a stereo pair or image sequence is presented. The algorithm can make use of both standard matching metrics and the rank and census filters, two filters based on order statistics which have been applied to the image matching problem. Their advantages include robustness to radiometric distortion and amenability to hardware implementation. Results obtained using both real stereo pairs and a synthetic stereo pair with ground truth were compared. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
The rank and census are two filters based on order statistics which have been applied to the image matching problem for stereo pairs. Advantages of these filters include their robustness to radiometric distortion and small amounts of random noise, and their amenability to hardware implementation. In this paper, a new matching algorithm is presented, which provides an overall framework for matching, and is used to compare the rank and census techniques with standard matching metrics. The algorithm was tested using both real stereo pairs and a synthetic pair with ground truth. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
In this paper we propose a method to generate a large scale and accurate dense 3D semantic map of street scenes. A dense 3D semantic model of the environment can significantly improve a number of robotic applications such as autonomous driving, navigation or localisation. Instead of using offline trained classifiers for semantic segmentation, our approach employs a data-driven, nonparametric method to parse scenes which easily scale to a large environment and generalise to different scenes. We use stereo image pairs collected from cameras mounted on a moving car to produce dense depth maps which are combined into a global 3D reconstruction using camera poses from stereo visual odometry. Simultaneously, 2D automatic semantic segmentation using a nonparametric scene parsing method is fused into the 3D model. Furthermore, the resultant 3D semantic model is improved with the consideration of moving objects in the scene. We demonstrate our method on the publicly available KITTI dataset and evaluate the performance against manually generated ground truth.
Resumo:
Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.
Resumo:
Simultaneous recordings of spike trains from multiple single neurons are becoming commonplace. Understanding the interaction patterns among these spike trains remains a key research area. A question of interest is the evaluation of information flow between neurons through the analysis of whether one spike train exerts causal influence on another. For continuous-valued time series data, Granger causality has proven an effective method for this purpose. However, the basis for Granger causality estimation is autoregressive data modeling, which is not directly applicable to spike trains. Various filtering options distort the properties of spike trains as point processes. Here we propose a new nonparametric approach to estimate Granger causality directly from the Fourier transforms of spike train data. We validate the method on synthetic spike trains generated by model networks of neurons with known connectivity patterns and then apply it to neurons limultaneously recorded from the thalamus and the primary somatosensory cortex of a squirrel monkey undergoing tactile stimulation.
Resumo:
Terrain traversability estimation is a fundamental requirement to ensure the safety of autonomous planetary rovers and their ability to conduct long-term missions. This paper addresses two fundamental challenges for terrain traversability estimation techniques. First, representations of terrain data, which are typically built by the rover’s onboard exteroceptive sensors, are often incomplete due to occlusions and sensor limitations. Second, during terrain traversal, the rover-terrain interaction can cause terrain deformation, which may significantly alter the difficulty of traversal. We propose a novel approach built on Gaussian process (GP) regression to learn, and consequently to predict, the rover’s attitude and chassis configuration on unstructured terrain using terrain geometry information only. First, given incomplete terrain data, we make an initial prediction under the assumption that the terrain is rigid, using a learnt kernel function. Then, we refine this initial estimate to account for the effects of potential terrain deformation, using a near-to-far learning approach based on multitask GP regression. We present an extensive experimental validation of the proposed approach on terrain that is mostly rocky and whose geometry changes as a result of loads from rover traversals. This demonstrates the ability of the proposed approach to accurately predict the rover’s attitude and configuration in partially occluded and deformable terrain.
Resumo:
Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.