973 resultados para Static volumetric method
Resumo:
A volumetric method for the quantitative determination of Sulphoxides has been developed, based on their oxidation to sulphones by dichromate in presence of 5 M sulphuric acid at 105–110°C. Excess dichromate is titrated by ferrous ammonium sulphate solution. The method is also applicable to the determination of Sulphoxides in metal sulphoxide complexes.
Resumo:
Mechanical swivel seat adaptations are a key aftermarket disability modification to any small-to medium-sized passenger vehicle. However, the crashworthiness of these devices is currently unregulated and the existing 20g dynamic sled testing approach is prohibitively expensive for prototype assessment purposes. In this paper, an alternative quasi-static test method for swivel seat assessment is presented, and two different approaches (free-body diagram and multibody modelling) validated through published experimental data are developed to determine the appropriate loading conditions to apply in the quasi-static testing.Results show the two theoretical approaches can give similar results for estimating the quasi-static loading conditions, and this depends on the seatbelt configuration. Application of the approach to quasi-static testing of both conventional seats and those with integrated seat belts showed the approach to be successful and easy to apply. It is proposed that this method be used by swivel seat designers to assess new prototypes prior to final validation via the traditional 20g sled test.
Resumo:
All the structures designed by engineers are vulnerable to natural disasters including floods and earthquakes. The energy released during strong ground motions should be dissipated by structural elements. Before 1990’s, this energy was expected to be dissipated through the beams and columns which at the same time were a part of gravity-load-resisting system. However, the main disadvantage of this idea was that gravity-resisting-frame was not repairable. Hence, during 1990’s, the idea of designing passive energy dissipation systems, including dampers, emerged. At the beginning, main problem was lack of guidelines for passive energy dissipation systems. Although till 2000 many guidelines and procedures where published, yet most of them were based on complicated analysis which was not so convenient for engineers and practitioners. In order to solve this problem recently some alternative design methods are proposed including 1. Lopez Garcia (2001) simple procedure for optimal damper configuration in MDOF structures 2. Christopoulos and Filiatrault (2006) trial and error procedure 3. Silvestri et al. (2010) Five-Step Method. 4. Palermo et al. (2015) Direct Five-Step Method. 5. Palermo et al. (2016) Simplified Equivalent Static Analysis (ESA). In this study, effectiveness and differences between last three alternative methods have been evaluated.
Resumo:
The static and dynamic pressure concentration isotherms (PCIs) of MmNi(5-x)Al(x). (x = 0, 0.3, 0.5 and 0.8) hydrides were measured at different temperatures using volumetric method. The effect of Al substitution on PCI and thermodynamic properties were studied. The plateau pressure and maximum hydrogen storage capacity decreased with Al content whereas reaction enthalpy increased. The plateau pressure, plateau slope and hysteresis effect was observed more for dynamic PCIs compared to static PCIs. Different mathematical models used for metal hydride-based thermodynamic devices simulation are compared to select suitable model for static and dynamic PCI simulation of MmNi(5)-based hydrides. Few important physical coefficients (partial molar volume, reaction enthalpy, reaction entropy, etc.) useful for development of thermodynamic devices were estimated. A relation has been proposed to correlate aluminium content and physical coefficients for the prediction of unknown PCI. The simulated and experimental PCIs were found matching closely for both static and dynamic conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
A static enclosure method was applied to determine the exchange of dimethyl sulfide (DMS) and carbonyl sulfide (OCS) between the surface of Sphagnum peatlands and the atmosphere. Measurements were performed concurrently with dynamic (flow through) enclosure measurements with sulfur-free air used as sweep gas. This latter technique has been used to acquire the majority of available data on the exchange of S gases between the atmosphere and the continental surfaces and has been criticized because it is thought to overestimate the true flux of gases by disrupting natural S gas gradients. DMS emission rates determined by both methods were not statistically different between 4 and >400 nmol m−2 h−1, indicating that previous data on emissions of at least DMS are probably valid. However, the increase in DMS in static enclosures was not linear, indicating the potential for a negative feedback of enclosure DMS concentrations on efflux. The dynamic enclosure method measured positive OCS flux rates (emission) at all sites, while data using static enclosures indicated that OCS was consumed from the atmosphere at these same sites at rates of 3.7 to 55 nmol m−2 h−1. Measurements using both enclosure techniques at a site devoid of vegetation showed that peat was a source of both DMS and OCS. However, the rate of OCS efflux from decomposing peat was more than counterbalanced by OCS consumption by vegetation, including Sphagnum mosses, and net OCS uptake occurred at all sites. We propose that all wetlands are net sinks for OCS.
Resumo:
In this work, a volumetric unit previously assembled by the research group was upgraded. This unit revamping was necessary due to the malfunction of the solenoid valves employed in the original experimental setup, which were not sealing the gas properly leading to erroneous adsorption equilibrium measurements. Therefore, the solenoid valves were substituted by manual ball valves. After the volumetric unit improvement its operation was validated. For this purpose, the adsorption equilibrium of carbon dioxide (CO2) at 323K and 0 - 20 bar was measured on two different activated carbon samples, in the of extrudates (ANG6) and of a honeycomb monolith (ACHM). The adsorption equilibrium results were compared with data previously measured by the research group, using a high-pressure microbalance from Rubotherm GmbH (Germany) – gravimetric. The results obtained using both apparatuses are coincident thus validating the good operation of the volumetric unit upgraded in this work. Furthermore, the adsorption equilibrium of CO2 at 303K and 0 - 10 bar on Metal-Organic Frameworks (MOFs) Cu-BTC and Fe-BTC was also studied. The CO2 adsorption equilibrium results for both MOFs were compared with the literature results showing good agreement, which confirms the good quality of the experimental results obtained in the new volumetric unit. Cu-BTC sample showed significantly higher CO2 adsorption capacity when compared with the Fe-BTC sample. The revamping of the volumetric unit included a new valve configuration in order to allow testing an alternative method for the measurement of adsorption equilibrium. This new method was employed to measure the adsorption equilibrium of CO2 on ANG6 and ACHM at 303, 323 and 353K within 0-10 bar. The good quality of the obtained experimental data was testified by comparison with data previously obtained by the research group in a gravimetric apparatus.
Resumo:
The rising concerns about environmental pollution and global warming have facilitated research interest in hydrogen energy as an alternative energy source. To apply hydrogen for transportations, several issues have to be solved, within which hydrogen storage is the most critical problem. Lots of materials and devices have been developed; however, none is able to meet the DOE storage target. The primary issue for hydrogen physisorption is a weak interaction between hydrogen and the surface of solid materials, resulting negligible adsorption at room temperature. To solve this issue, there is a need to increase the interaction between the hydrogen molecules and adsorbent surface. In this study, intrinsic electric dipole is investigated to enhance the adsorption energy. The results from the computer simulation of single ionic compounds with hydrogen molecules to form hydrogen clusters showed that electrical charge of substances plays an important role in generation of attractive interaction with hydrogen molecules. In order to further examine the effects of static interaction on hydrogen adsorption, activated carbon with a large surface area was impregnated with various ionic salts including LiCl, NaCl, KCl, KBr, and NiCl and their performance for hydrogen storage was evaluated by using a volumetric method. Corresponding computer simulations have been carried out by using DFT (Density Functional Theory) method combined with point charge arrays. Both experimental and computational results prove that the adsorption capacity of hydrogen and its interaction with the solid materials increased with electrical dipole moment. Besides the intrinsic dipole, an externally applied electric field could be another means to enhance hydrogen adsorption. Hydrogen adsorption under an applied electric field was examined by using porous nickel foil as electrodes. Electrical signals showed that adsorption capacity increased with the increasing of gas pressure and external electric voltage. Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.
Resumo:
Background and purpose: The purpose of the work presented in this paper was to determine whether patient positioning and delivery errors could be detected using electronic portal images of intensity modulated radiotherapy (IMRT). Patients and methods: We carried out a series of controlled experiments delivering an IMRT beam to a humanoid phantom using both the dynamic and multiple static field method of delivery. The beams were imaged, the images calibrated to remove the IMRT fluence variation and then compared with calibrated images of the reference beams without any delivery or position errors. The first set of experiments involved translating the position of the phantom both laterally and in a superior/inferior direction a distance of 1, 2, 5 and 10 mm. The phantom was also rotated 1 and 28. For the second set of measurements the phantom position was kept fixed and delivery errors were introduced to the beam. The delivery errors took the form of leaf position and segment intensity errors. Results: The method was able to detect shifts in the phantom position of 1 mm, leaf position errors of 2 mm, and dosimetry errors of 10% on a single segment of a 15 segment IMRT step and shoot delivery (significantly less than 1% of the total dose). Conclusions: The results of this work have shown that the method of imaging the IMRT beam and calibrating the images to remove the intensity modulations could be a useful tool in verifying both the patient position and the delivery of the beam.
Resumo:
Volumetric method based adsorption measurements of nitrogen on two specimens of activated carbon (Fluka and Sarabhai) reported by us are refitted to two popular isotherms, namely, Dubunin−Astakhov (D−A) and Toth, in light of improved fitting methods derived recently. Those isotherms have been used to derive other data of relevance in design of engineering equipment such as the concentration dependence of heat of adsorption and Henry’s law coefficients. The present fits provide a better representation of experimental measurements than before because the temperature dependence of adsorbed phase volume and structural heterogeneity of micropore distribution have been accounted for in the D−A equation. A new correlation to the Toth equation is a further contribution. The heat of adsorption in the limiting uptake condition is correlated with the Henry’s law coefficients at the near zero uptake condition.
Resumo:
This paper presents adsorption isotherms for HFC-134a on activated charcoal, in the temperature range of 273-353 K and for pressures up to 0.65 MPa, measured using the volumetric method. Three samples of charcoals with widely varying surface areas were chosen. The shapes of the isotherms,obtained from the experimental data were similar in all cases and comparable to those reported in the literature. Adsorption parameters were evaluated from the isotherms using the Dubinin-Astakhov (DA) equation. The concentration dependence of the isosteric enthalpies of adsorption is extracted from the data.
Resumo:
[ES]Estudio de la capacidad de transporte de energía del Parque eólico de la Sía mediante la implementación de un método de cálculo variable(CIGRE)en contraposición a los métodos estáticos y constantes. Mediante la comparación y estudio de éstos se evaluará la posibilidad de ampliar la capacidad del parque.
Resumo:
O estudo do fluxo de água e do transporte escalar em reservatórios hidrelétricos é importante para a determinação da qualidade da água durante as fases iniciais do enchimento e durante a vida útil do reservatório. Neste contexto, um código de elementos finitos paralelo 2D foi implementado para resolver as equações de Navier-Stokes para fluido incompressível acopladas a transporte escalar, utilizando o modelo de programação de troca de mensagens, a fim de realizar simulações em um ambiente de cluster de computadores. A discretização espacial é baseada no elemento MINI, que satisfaz as condições de Babuska-Brezzi (BB), que permite uma formulação mista estável. Todas as estruturas de dados distribuídos necessárias nas diferentes fases do código, como pré-processamento, solução e pós-processamento, foram implementadas usando a biblioteca PETSc. Os sistemas lineares resultantes foram resolvidos usando o método da projeção discreto com fatoração LU por blocos. Para aumentar o desempenho paralelo na solução dos sistemas lineares, foi empregado o método de condensação estática para resolver a velocidade intermediária nos vértices e no centróide do elemento MINI separadamente. Os resultados de desempenho do método de condensação estática com a abordagem da solução do sistema completo foram comparados. Os testes mostraram que o método de condensação estática apresenta melhor desempenho para grandes problemas, às custas de maior uso de memória. O desempenho de outras partes do código também são apresentados.
Resumo:
The rugged surface topography determined the seismic data acquisition construction conditions and the seismic wave explosive and receiver quality in Qaidam Basin. This dissertation systematically researched the seismic acquisition, imaging process and the attribute analysis techniques of complicated oil and gas reservoir. The main research achievements and cognitions are as follows: 1. Through the stimulation effects research and analysis from the aspect of lithologic water-containing differences, it’s specific that stable hydrous sand layer can effectively enhance the stimulation effects combined with the corresponding field tests. The seismic data S/N ratio has been improved due to the combination explosive stimulation. Through the fold number and maximum offset analyses of target horizon, the complicated geometry has been optimized and the S/N ratio of seismic data has been improved, which made an important basis for improvement of 3D seismic data. 2. It has been proved that the first arrival refraction static correction method under the model constraint of fine surface survey is suitable to the Qaidam Basin of western areas by the real seismic data processing. Although the refraction horizon of near surface has some changes in a certain extent, it’s steady basically. The refraction horizon can be continuously traced in sections, so it’s qualified for the refraction static correction method on the whole. 3. The research is based on the curved-ray pre-stack time migration techniques of rough topography, and improved the imaging precision of complex areas. This techniques adopted the constant and variable velocity scanning mode and enhanced the velocity analysis precision. The 3D pre-stack time migration techniques reasonably solved the imaging and velocity multiple solutions problems of steep-dip faults and the intersections of horizontal layers. What’s more, fine velocity analysis and mute are very important to enhance the imaging precision of the seismic data in complicated Wunan areas. 4. The 3D seismic data edge-preserving processing methods have been realized due to the image process techniques. Because this method uses the large range filter, it can attenuate the noise maximally. The faults, break points, lithologic pinchout points and lithologic body of small scale such as river will not be influenced by blur because of the edge-preserving characterization of the method which is really an effective assistant technique of low S/N ratio seismic data attribute analysis. 5. The use of spectral decomposition technique can effectively identify the reservoirs. The special geology body which will not be identified (or without obvious characters) in the seismic profile may be found through the details changes of different frequencies in the amplitude profiles.