969 resultados para Static voltage stability margin
Resumo:
This paper presents an alternative methodology for loading margin improvement and total real power losses reduction by using a continuation method. In order to attain this goal, a parameterizing equation based on the total real power losses and the equations of the reactive power at the slack and generation buses are added to the conventional power flow equations. The voltages at these buses are considered as control variables and a new parameter is chosen to reduce the real power losses in the transmission lines. The results show that this procedure leads to maximum loading point increase and consequently, in static voltage stability margin improvement. Besides, this procedure also takes to a reduction in the operational costs and, simultaneously, to voltage profile improvement. Another important result of this methodology is that the resulting operating points are close to that provided by an optimal power flow program. © 2004 IEEE.
Resumo:
Problems as voltage increase at the end of a feeder, demand supply unbalance in a fault condition, power quality decline, increase of power losses, and reduction of reliability levels may occur if Distributed Generators (DGs) are not properly allocated. For this reason, researchers have been employed several solution techniques to solve the problem of optimal allocation of DGs. This work is focused on the ancillary service of reactive power support provided by DGs. The main objective is to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). The LOC will be determined for different allocation alternatives of DGs as a result of a multi-objective optimization process, aiming the minimization of losses in the lines of the system and costs of active power generation from DGs, and the maximization of the static voltage stability margin of the system. The effectiveness of the proposed methodology in improving the goals outlined was demonstrated using the IEEE 34 bus distribution test feeder with two DGs cosidered to be allocated. © 2011 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This letter presents an alternative approach for reducing the total real power losses by using a continuation method. Results for two simple test systems and for the IEEE 57-bus system show that this procedure results in larger voltage stability margin. Besides, the reduction of real power losses obtained with this procedure leads to significant money savings and, simultaneously, to voltage profile improvement. Comparison between the solution of an optimal power flow and the proposed method shows that the latter can provide near optimal results and so, it can be a reasonable alternative to power system voltage stability enhancement.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper provides a contribution to the contingency analysis of electric power systems under steady state conditions. An alternative methodology is presented for static contingency analyses that only use continuation methods and thus provides an accurate determination of the loading margin. Rather than starting from the base case operating point, the proposed continuation power flow obtains the post-contingency loading margins starting from the maximum loading and using a bus voltage magnitude as a parameter. The branch selected for the contingency evaluation is parameterised using a scaling factor, which allows its gradual removal and assures the continuation power flow convergence for the cases where the method would diverge for the complete transmission line or transformer removal. The applicability and effectiveness of the proposed methodology have been investigated on IEEE test systems (14, 57 and 118 buses) and compared with the continuation power flow, which obtains the post-contingency loading margin starting from the base case solution. In general, for most of the analysed contingencies, few iterations are necessary to determine the post-contingency maximum loading point. Thus, a significant reduction in the global number of iterations is achieved. Therefore, the proposed methodology can be used as an alternative technique to verify and even to obtain the list of critical contingencies supplied by the electric power systems security analysis function. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Singular value analyses of voltage stability on power system considering wind generation variability
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The installation of induction distributed generators should be preceded by a careful study in order to determine if the point of common coupling is suitable for transmission of the generated power, keeping acceptable power quality and system stability. In this sense, this paper presents a simple analytical formulation that allows a fast and comprehensive evaluation of the maximum power delivered by the induction generator, without losing voltage stability. Moreover, this formulation can be used to identify voltage stability issues that limit the generator output power. All the formulation is developed by using the equivalent circuit of squirrel-cage induction machine. Simulation results are used to validate the method, which enables the approach to be used as a guide to reduce the simulation efforts necessary to assess the maximum output power and voltage stability of induction generators. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The complexity of power systems has increased in recent years due to the operation of existing transmission lines closer to their limits, using flexible AC transmission system (FACTS) devices, and also due to the increased penetration of new types of generators that have more intermittent characteristics and lower inertial response, such as wind generators. This changing nature of a power system has considerable effect on its dynamic behaviors resulting in power swings, dynamic interactions between different power system devices, and less synchronized coupling. This paper presents some analyses of this changing nature of power systems and their dynamic behaviors to identify critical issues that limit the large-scale integration of wind generators and FACTS devices. In addition, this paper addresses some general concerns toward high compensations in different grid topologies. The studies in this paper are conducted on the New England and New York power system model under both small and large disturbances. From the analyses, it can be concluded that high compensation can reduce the security limits under certain operating conditions, and the modes related to operating slip and shaft stiffness are critical as they may limit the large-scale integration of wind generation.
Resumo:
v. 1. Methods of predicting structural temperatures due to aerodynamic heating, by A. H. Blessing.--v. 2. Aerodynamics, by J. R Batt.--v. 3. Experimental and analytical methods for the determination of thermally-affected wing deflectional behavior, by R. H. Gallagher.--v. 3. sup. Description and results of tests conducted to determine the thermally affected behavior of corrugated multiweb wing structures, by J. F. Quinn.