843 resultados para Static bed height
Resumo:
The feasibility of characterizing the dynamics of a spouted bed based on acoustic emission (AE) signals is evaluated. Acoustic emission signals were measured in a semi-cylindrical Plexiglas column of diameter 150 mm and height 1000 mm with a conical base of internal angle 60 degrees and 25 mm inlet orifice diameter. Data were obtained for U/U(ms), from 0.3 to 2.0, static bed height from 250 to 500 mm, and glass beads of diameter 1.2 and 2.4 mm. AE signals reflected the effects of particle size and U/U(ms), but in general were insensitive to bed depth, even when there were drastic changes in spouting flow patterns. The results indicate that the AE signals were insensitive to the spouted bed hydrodynamics for the conditions studied. Overall, it appears that the AE analysis is unlikely to be a suitable technique for discriminating spouted bed flow regimes, at least for the range of frequencies and operating conditions investigated.
Resumo:
Hydrodynamic studies were conducted in a semi-cylindrical spouted bed column of diameter 150 mm, height 1000 mm, conical base included angle of 60 degrees and inlet orifice diameter 25 mm. Pressure transducers at several axial positions were used to obtain pressure fluctuation time series with 1.2 and 2.4 mm glass beads at U/U-ms from 0.3 to 1.6, and static bed depths from 150 to 600 mm. The conditions covered several flow regimes (fixed bed, incipient spouting, stable spouting, pulsating spouting, slugging, bubble spouting and fluidization). Images of the system dynamics were also acquired through the transparent walls with a digital camera. The data were analyzed via statistical, mutual information theory, spectral and Hurst`s Rescaled Range methods to assess the potential of these methods to characterize the spouting quality. The results indicate that these methods have potential for monitoring spouted bed operation.
Resumo:
This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous driving of the horizontal plate at the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height and rotational speed of the shearing plate are measured. Moreover, local stress fluctuations are measured in a medium made of steel spheres 2 and 3 mm in diameter. Both monodisperse packing and bidisperse packing are investigated to reveal the influence of size diversity in intermittent features of granular materials. Experiments are conducted in an annulus that can contain up to 15 kg of spherical steel balls. The shearing granular medium takes place via the rotation of the upper plate which compresses the material loaded inside the annulus. Fluctuations of compressive force are locally measured at the bottom of the annulus using a piezoelectric sensor. Rapid shear flow experiments are pursued at different compressive forces and shear rates and the sensitivity of fluctuations are then investigated by different means through monodisperse and bidisperse packings. Another important feature of rapid granular shear flows is the formation of ordered structures upon shearing. It requires a certain range for the amount of granular material (uniform size distribution) loaded in the system in order to obtain stable flows. This is studied more deeply in this thesis. The results of the current work bring some new insights into deformation dynamics and intermittency in rapid granular shear flows. The experimental apparatus is modified in comparison to earlier investigations. The measurements produce data for various quantities continuously sampled from the start of shearing to the end. Static failure and dynamic shearing ofa granular medium is investigated. The results of this work revealed some important features of failure dynamics and structure formation in the system. Furthermore, some computer simulations are performed in a 2D annulus to examine the nature of kinetic energy dissipation. It is found that turbulent flow models can statistically represent rapid granular flows with high accuracy. In addition to academic outcomes and scientific publications our results have a number of technological applications associated with grinding, mining and massive grain storages.
Resumo:
The study aims to the hydrodynamic characteristics of swirling fluidized bed, using large particles (Geldart D-type) selected from locally available agricultural produce (coffee beans and black pepper). The important variables considered in the present study include percentage area of opening, angle of air injection and the percentage useful area of the distributor. A total of seven distributors have been designed and fabricated for a bed column of 300 mm, namely single row vane type distributors (15˚ and 20˚ vane angle), inclined hole type distributors (15˚ and 20˚ vane angle) and perforated plate distributors. The useful area of distributor of single row vane type, three now vane-type and inclined hole-type distributors are respectively 64%,91% and 94%. The hydrodynamic parameters considered in the present study include distributor pressure drop, air velocity, minimum fluidizing velocity, bed pressure drop, bed height and the bed behaviour. It has been observed that, in general, the distributor pressure drop decreases with an increase in the percentage area of opening, Further, and increase in the area of opening above 17% will not considerably reduce the distributor pressure drop. In the present study, for the distributor with an area of opening 17%, and corresponding to the maximum measured superficial velocity of 4.33 m/s, the distributor pressure drop obtained was 55.25mm of water. The study on the bed behavior revealed that, in a swirling fluidized bed, once swirl motion starts, the bed pressure drop increases with superficial velocity in the outer region and it decreases in the inner region. This means that, with higher superficial velocity, the air might get by-passed through the inner boundary of the bed (around the cone). So, depending on the process for which the bed is used, the maximum superficial velocity is to be limited to have an optimum bed performance.
Resumo:
L-Glutamine amidohydrolase (L-glutaminase, EC 3.5.1.2) is a therapeutically and industrially important enzyme. Because it is a potent antileukemic agent and a flavor-enhancing agent used in the food industry, many researchers have focused their attention on L-glutaminase. In this article, we report the continuous production of extracellular L-glutaminase by the marine fungus Beauveria bassiana BTMF S-10 in a packed-bed reactor. Parameters influencing bead production and performance under batch mode were optimized in the order-support (Na-alginate) concentration, concentration of CaCl2 for bead preparation, curing time of beads, spore inoculum concentration, activation time, initial pH of enzyme production medium, temperature of incubation, and retention time. Parameters optimized under batch mode for L-glutaminase production were incorporated into the continuous production studies. Beads with 12 × 108 spores/g of beads were activated in a solution of 1% glutamine in seawater for 15 h, and the activated beads were packed into a packed-bed reactor. Enzyme production medium (pH 9.0) was pumped through the bed, and the effluent was collected from the top of the column. The effect of flow rate of the medium, substrate concentration, aeration, and bed height on continuous production of L-glutaminase was studied. Production was monitored for 5 h in each case, and the volumetric productivity was calculated. Under the optimized conditions for continuous production, the reactor gave a volumetric productivity of 4.048 U/(mL·h), which indicates that continuous production of the enzyme by Ca-alginate-immobilizedspores is well suited for B. bassiana and results in a higher yield of enzyme within a shorter time. The results indicate the scope of utilizing immobilized B. bassiana for continuous commercial production of L-glutaminase
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work is concerned with the assessment of a newer version of the spout-fluid bed where the gas is supplied from a common plenum and the distributor controls the operational phenomenon. Thus the main body of the work deals with the effect of the distributor design on the mixing and segregation of solids in a spout-filled bed. The effect of distributor design in the conventional fluidised bed and of variation of the gas inlet diameter in a spouted bed were also briefly investigated for purpose of comparison. Large particles were selected for study because they are becoming increasingly important in industrial fluidised beds but have not been thoroughly investigated. The mean particle diameters of the fraction ranged from 550 to 2400 mm, and their specific gravity from 0.97 to 2.45. Only work carried out with binary systems is reported here. The effect of air velocity, particle properties, bed height, the relative amount of jetsam and flotsam and initial conditions on the steady-state concentration profiles were assessed with selected distributors. The work is divided into three sections. Sections I and II deal with the fluidised bed and spouted bed systems. Section III covers the development of the spout-filled bed and its behaviour with reference to distributor design and it is shown how benefits of both spouting and fluidising phenomena can be exploited. In the fluidisation zone, better mixing is achieved by distributors which produce a large initial bubble diameter. Some common features exist between the behaviour of unidensity jetsam-rich systems and different density flotsam-rich systems. The shape factor does not seem to have an affect as long as it is only restricted to the minor component. However, in the case of the major component, particle shape significantly affects the final results. Studies of aspect ratio showed that there is a maximum (1.5) above which slugging occurs and the effect of the distributor design is nullified. A mixing number was developed for unidensity spherical rich systems, which proved to be extremely useful in quantifying the variation in mixing and segregation with changes in distributor design.
Resumo:
O objectivo desta tese é dimensionar um secador em leito fluidizado para secagem de cereais, nomeadamente, secagem de sementes de trigo. Inicialmente determinaram-se as condições de hidrodinâmica (velocidade de fluidização, TDH, condições mínimas de “slugging”, expansão do leito, dimensionamento do distribuidor e queda de pressão). Com as condições de hidrodinâmica definidas, foi possível estimar as dimensões físicas do secador. Neste ponto, foram realizados estudos relativamente à cinética da secagem e à própria secagem. Foi também estudado o transporte pneumático das sementes. Deste modo, determinaram-se as velocidades necessárias ao transporte pneumático e respectivas quedas de pressão. Por fim, foi realizada uma análise custos para que se soubesse o custo deste sistema de secagem. O estudo da secagem foi feito para uma temperatura de operação de 50ºC, tendo a ressalva que no limite se poderia trabalhar com 60ºC. A velocidade de operação é de 2,43 m/s, a altura do leito fixo é de 0,4 m, a qual sofre uma expansão durante a fluidização, assumindo o valor de 0,79 m. O valor do TDH obtido foi de 1,97 m, que somado à expansão do leito permite obter uma altura total da coluna de 2,76 m. A altura do leito fixo permite retirar o valor do diâmetro que é de 0,52 m. Verifica-se que a altura do leito expandido é inferior à altura mínima de “slugging” (1,20 m), no entanto, a velocidade de operação é superior à velocidade mínima de “slugging” (1,13 m/s). Como só uma das condições mínimas é cumprida, existe a possibilidade da ocorrência de “slugging”. Finalmente, foi necessário dimensionar o distribuidor, que com o diâmetro de orifício de 3 mm, valor inferior ao da partícula (3,48 mm), permite a distruibuição do fluido de secagem na coluna através dos seus 3061 orifícios. O inicio do estudo da secagem centrou-se na determinação do tempo de secagem. Além das duas temperaturas atrás referidas, foram igualmente consideradas duas humidades iniciais para os cereais (21,33% e 18,91%). Temperaturas superiores traduzem-se em tempos de secagem inferiores, paralelamente, teores de humidade inicial inferiores indicam tempos menores. Para a temperatura de 50ºC, os tempos de secagem assumiram os valores de 2,8 horas para a 21,33% de humidade e 2,7 horas para 18,91% de humidade. Foram também tidas em conta três alturas do ano para a captação do ar de secagem, Verão e Inverno representando os extremos, e a Meia- Estação. Para estes três casos, foi possível verificar que a humidade específica do ar não apresenta alterações significativas entre a entrada no secador e a corrente de saída do mesmo equipamento, do mesmo modo que a temperatura de saída pouco difere da de entrada. Este desvio de cerca de 1% para as humidades e para as temperaturas é explicado pela ausência de humidade externa nas sementes e na pouca quantidade de humidade interna. Desta forma, estes desvios de 1% permitem a utilização de uma razão de reciclagem na ordem dos 100% sem que o comportamento da secagem se altere significativamente. O uso de 100% de reciclagem permite uma poupança energética de cerca de 98% no Inverno e na Meia-Estação e de cerca de 93% no Verão. Caso não fosse realizada reciclagem, seria necessário fornecer à corrente de ar cerca de 18,81 kW para elevar a sua temperatura de 20ºC para 50ºC (Meia-Estação), cerca de 24,67 kW para elevar a sua temperatura de 10ºC para 50ºC (Inverno) e na ordem dos 8,90 kW para elevar a sua temperatura dos 35ºC para 50ºC (Verão). No caso do transporte pneumático, existem duas linhas, uma horizontal e uma vertical, logo foi necessário estimar o valor da velocidade das partículas para estes dois casos. Na linha vertical, a velocidade da partícula é cerca de 25,03 m/s e cerca de 35,95 m/s na linha horizontal. O menor valor para a linha vertical prende-se com o facto de nesta zona ter que se vencer a força gravítica. Em ambos os circuitos a velocidade do fluido é cerca de 47,17 m/s. No interior da coluna, a velocidade do fluido tem o valor de 10,90 m/s e a velocidade das partículas é de 1,04 m/s. A queda de pressão total no sistema é cerca de 2408 Pa. A análise de custos ao sistema de secagem indicou que este sistema irá acarretar um custo total (fabrico mais transporte) de cerca de 153035€. Este sistema necessita de electricidade para funcionar, e esta irá acarretar um custo anual de cerca de 7951,4€. Embora este sistema de secagem apresente a possibilidade de se realizar uma razão de reciclagem na ordem dos 100% e também seja possível adaptar o mesmo para diferentes tipos de cereais, e até outros tipos de materiais, desde que possam ser fluidizados, o seu custo impede que a realização deste investimento não seja atractiva, especialmente tendo em consideração que se trata de uma instalação à escala piloto com uma capacidade de 45 kgs.
Resumo:
The present study deals with phenol adsorption on chitin and chitosan and removal of contaminants from wastewater of a petroleum refinery. The adsorption kinetic data were best fitted to first- and second-order models for chitosan and chitin, respectively. The results of adsorption isotherms showed Langmuir model more appropriately described than a Freundlich model for both adsorbents. The adsorption capacity was 1.96 and 1.26 mg/g for chitin and chitosan, respectively. Maximum removal of phenol was about 70-80% (flow rate: 1.5 mL/min, bed height: 18.5 cm, and 30 mg/L of phenol. Wastewater treatment with chitin in a fixed-bed system showed reductions of about 52 and 92% for COD and oil and greases, and for chitosan 65 and 67%, respectively. The results show improvement of the effluent quality after treatment with chitin and chitosan.
Resumo:
Supercritical fluid extraction (SFE) from solids has proven to be technically feasible for almost any system; nonetheless, its economical viability has been proven for a restricted number of systems. A common practice is to compare the cost of manufacturing of vegetable extracts by a variety of techniques without deeply considering the huge differences in composition and functional properties among the various types of extracts obtained; under this circumstance, the cost of manufacturing do not favor SFE. Additionally, the influence of external parameters such as the agronomic conditions and the SFE system geometry are not considered. In the present work, these factors were studied for the system fennel seeds + CO2. The effects of the harvesting season and the degree of maturation on the global yields for the system fennel seeds + CO2 were analyzed at 300 bar and 40 degrees C. The effects of the pressure on the global yields were determined for the temperatures of 30 and 40 degrees C. Kinetics experiments were done for various ratios of bed height to bed diameter. Fennel extracts were also obtained by hydrodistillation and low-pressure solvent extraction. The chemical composition of the fennel extracts were determined by gas chromatography. The SFE maximum global yield (12.5%, dry basis) was obtained with dry harvested fennel seeds. Anethole and fenchone were the major constituents of the extract; the following fat acids palmitic (C16H32O2), palmitoleic stearic (C18H36O2), oleic (C18H34O2), linoleic (C18H32O2) and linolenic (C18H30O2) were also detected in the extracts. A relation between amounts of feed and solvent, bed height and diameter, and solvent flow rate was proposed. The models of Sovova, Goto et al. and Tan and Lion were capable of describing the mass transfer kinetics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
This project was born with the aim of developing an environmentally and financially sustainable process to dispose of end-life tires. In this perspective was devised an innovative static bed batch pilot reactor where pyrolysis can be carried out on the whole tires in order to recover energy and materials and simultaneously save the energy costs of their shredding. The innovative plant is also able to guarantee a high safety of the process thanks to the presence of a hydraulic guard. The pilot plant was used to pyrolyze new and end-life tires at temperatures from 400 to 600°C with step of 50°C in presence of steam. The main objective of this research was to evaluate the influence of the maximum process temperature on yields and chemical-physics properties of pyrolysis products. In addition, in view of a scale-up of the plant in continuous mode, the influence of the nature of several different tires as well as the effects of the aging on the final products were studied. The same pilot plant was also used to carry out pyrolysis on polymeric matrix composites in order to obtain chemical feedstocks from the resin degradation together with the recovery of the reinforcement in the form of fibers. Carbon fibers reinforced composites ad fiberglass was treated in the 450-600°C range and the products was fully characterized. A second oxidative step was performed on the pyrolysis solid residue in order to obtain the fibers in a suitable condition for a subsequent re-impregnation in order to close the composite Life Cycle in a cradle-to-cradle approach. These investigations have demonstrated that steel wires, char, carbon and glass fibers recovered in the prototypal plant as solid residues can be a viable alternative to pristine materials, making use of them to obtain new products with a commercial added value.
Resumo:
Surfactants find large applications in detergents, paints, coatings, food and pharmaceutical industries. Other than that, much focused work has been carried out in oil recovery in petroleum industries and raw material extraction in mining industries. This is because of their unique structure and ability to simultaneously adhere to materials which are both structurally and physically different. The current thesis focuses on interactions of oil with different commercially available and laboratory synthesized surfactants in terms of characteristics such as foaming, ultrasound exposure and toxicity. Foaming is one important characteristic of surfactants that is widely utilized for oil recovery purposes. Researchers utilize surfactants' special ability to provide foam stability to for more efficient oil herding capability. The foam stability and foam volumes are calculated using static foam height tests. Further dispersion or oil in water emulsion formation is observed using ultrasound sources. As described earlier surfactants are not only used as foams for oil displacement, but they are also used for dispersion purposes where they are key components of dispersant formulations. During such operations, especially in sea conditions where adverse effects on aquatic life are a concern, toxicity of chemicals used becomes an important factor. Our toxicity testing experiments involves different surfactants, solvents and crude oil combinations through exposure to special light luminescent bacteria. The decrease in light intensity of the exposed bacteria is related to toxic effects of the samples.