864 resultados para Static Traffic Assignment
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. ^ Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. ^ Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. ^ With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.^
Resumo:
Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.
Resumo:
Transportation Department, Washington, D.C.
Resumo:
Cover title.
Resumo:
The standard highway assignment model in the Florida Standard Urban Transportation Modeling Structure (FSUTMS) is based on the equilibrium traffic assignment method. This method involves running several iterations of all-or-nothing capacity-restraint assignment with an adjustment of travel time to reflect delays encountered in the associated iteration. The iterative link time adjustment process is accomplished through the Bureau of Public Roads (BPR) volume-delay equation. Since FSUTMS' traffic assignment procedure outputs daily volumes, and the input capacities are given in hourly volumes, it is necessary to convert the hourly capacities to their daily equivalents when computing the volume-to-capacity ratios used in the BPR function. The conversion is accomplished by dividing the hourly capacity by a factor called the peak-to-daily ratio, or referred to as CONFAC in FSUTMS. The ratio is computed as the highest hourly volume of a day divided by the corresponding total daily volume. ^ While several studies have indicated that CONFAC is a decreasing function of the level of congestion, a constant value is used for each facility type in the current version of FSUTMS. This ignores the different congestion level associated with each roadway and is believed to be one of the culprits of traffic assignment errors. Traffic counts data from across the state of Florida were used to calibrate CONFACs as a function of a congestion measure using the weighted least squares method. The calibrated functions were then implemented in FSUTMS through a procedure that takes advantage of the iterative nature of FSUTMS' equilibrium assignment method. ^ The assignment results based on constant and variable CONFACs were then compared against the ground counts for three selected networks. It was found that the accuracy from the two assignments was not significantly different, that the hypothesized improvement in assignment results from the variable CONFAC model was not empirically evident. It was recognized that many other factors beyond the scope and control of this study could contribute to this finding. It was recommended that further studies focus on the use of the variable CONFAC model with recalibrated parameters for the BPR function and/or with other forms of volume-delay functions. ^
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Esta tese de doutorado propõe uma formulação matemática para simulação de roteamento e alocação de comprimentos de onda em redes ópticas, sem a inclusão de restrições que não são inerentes ao problema básico e com o objetivo de ser aplicável a qualquer tipo de rede óptica com tráfego de demanda estática. O estabelecimento de uma rota seguida da seleção de um comprimento de onda é um dos pontos chave para o bom funcionamento de uma rede óptica, pois influencia na forma como os recursos da rede serão gerenciados. Assim, o processo de roteamento e alocação de comprimentos de onda em redes ópticas, conhecido como RWA (Routing and Wavelength Assignment), necessita de soluções que busquem a sua otimização. Entretanto, a despeito dos inúmeros estudos com o objetivo de otimizar o processo RWA, observa-se que não há, a priori, nenhuma solução que possa levar a uma padronização do referido processo. Considerando que a padronização é desejável na consolidação do uso de qualquer tecnologia, a Tese descrita neste trabalho é uma Função de Objetivo Genérico (FOG) que trata do processo de roteamento e alocação de comprimentos de onda, visando estabelecer uma base a partir da qual seja possível desenvolver um padrão ou vários padrões para redes ópticas. A FOG foi testada, via simulação, no processo de alocação de comprimentos de onda do inglês, Wavelength Assignment e no processo RWA como um todo. Em ambos os casos, os testes foram realizados considerando redes opacas, trazendo resultados surpreendentes, considerando a simplicidade da solução para um problema não trivial.
Resumo:
An optimizing compiler internal representation fundamentally affects the clarity, efficiency and feasibility of optimization algorithms employed by the compiler. Static Single Assignment (SSA) as a state-of-the-art program representation has great advantages though still can be improved. This dissertation explores the domain of single assignment beyond SSA, and presents two novel program representations: Future Gated Single Assignment (FGSA) and Recursive Future Predicated Form (RFPF). Both FGSA and RFPF embed control flow and data flow information, enabling efficient traversal program information and thus leading to better and simpler optimizations. We introduce future value concept, the designing base of both FGSA and RFPF, which permits a consumer instruction to be encountered before the producer of its source operand(s) in a control flow setting. We show that FGSA is efficiently computable by using a series T1/T2/TR transformation, yielding an expected linear time algorithm for combining together the construction of the pruned single assignment form and live analysis for both reducible and irreducible graphs. As a result, the approach results in an average reduction of 7.7%, with a maximum of 67% in the number of gating functions compared to the pruned SSA form on the SPEC2000 benchmark suite. We present a solid and near optimal framework to perform inverse transformation from single assignment programs. We demonstrate the importance of unrestricted code motion and present RFPF. We develop algorithms which enable instruction movement in acyclic, as well as cyclic regions, and show the ease to perform optimizations such as Partial Redundancy Elimination on RFPF.
Resumo:
Texas State Department of Highways and Public Transportation, Transportation Planning Division, Austin
Resumo:
Peer reviewed
Resumo:
Persistent daily congestion has been increasing in recent years, particularly along major corridors during selected periods in the mornings and evenings. On certain segments, these roadways are often at or near capacity. However, a conventional Predefined control strategy did not fit the demands that changed over time, making it necessary to implement the various dynamical lane management strategies discussed in this thesis. Those strategies include hard shoulder running, reversible HOV lanes, dynamic tolls and variable speed limit. A mesoscopic agent-based DTA model is used to simulate different strategies and scenarios. From the analyses, all strategies aim to mitigate congestion in terms of the average speed and average density. The largest improvement can be found in hard shoulder running and reversible HOV lanes while the other two provide more stable traffic. In terms of average speed and travel time, hard shoulder running is the most congested strategy for I-270 to help relieve the traffic pressure.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
Relatório de estágio para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Vias de Comunicação e Transportes