896 resultados para State Extension Problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal state estimation is a method that requires minimising a weighted, nonlinear, least-squares objective function in order to obtain the best estimate of the current state of a dynamical system. Often the minimisation is non-trivial due to the large scale of the problem, the relative sparsity of the observations and the nonlinearity of the objective function. To simplify the problem the solution is often found via a sequence of linearised objective functions. The condition number of the Hessian of the linearised problem is an important indicator of the convergence rate of the minimisation and the expected accuracy of the solution. In the standard formulation the convergence is slow, indicating an ill-conditioned objective function. A transformation to different variables is often used to ameliorate the conditioning of the Hessian by changing, or preconditioning, the Hessian. There is only sparse information in the literature for describing the causes of ill-conditioning of the optimal state estimation problem and explaining the effect of preconditioning on the condition number. This paper derives descriptive theoretical bounds on the condition number of both the unpreconditioned and preconditioned system in order to better understand the conditioning of the problem. We use these bounds to explain why the standard objective function is often ill-conditioned and why a standard preconditioning reduces the condition number. We also use the bounds on the preconditioned Hessian to understand the main factors that affect the conditioning of the system. We illustrate the results with simple numerical experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dec. 1960 incorrectly marked v. 22; v. 22 omitted in vol. enumeration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the problem of determining whether the state of several quantum mechanical subsystems is entangled. As in previous work on two subsystems we introduce a procedure for checking separability that is based on finding state extensions with appropriate properties and may be implemented as a semidefinite program. The main result of this work is to show that there is a series of tests of this kind such that if a multiparty state is entangled this will eventually be detected by one of the tests. The procedure also provides a means of constructing entanglement witnesses that could in principle be measured in order to demonstrate that the state is entangled.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An initialisation process is a key component in modern stream cipher design. A well-designed initialisation process should ensure that each key-IV pair generates a different key stream. In this paper, we analyse two ciphers, A5/1 and Mixer, for which this does not happen due to state convergence. We show how the state convergence problem occurs and estimate the effective key-space in each case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a new approach for solving the state estimation problem. The approach is aimed at producing a robust estimator that rejects bad data, even if they are associated with leverage-point measurements. This is achieved by solving a sequence of Linear Programming (LP) problems. Optimization is carried via a new algorithm which is a combination of “upper bound optimization technique" and “an improved algorithm for discrete linear approximation". In this formulation of the LP problem, in addition to the constraints corresponding to the measurement set, constraints corresponding to bounds of state variables are also involved, which enables the LP problem more efficient in rejecting bad data, even if they are associated with leverage-point measurements. Results of the proposed estimator on IEEE 39-bus system and a 24-bus EHV equivalent system of the southern Indian grid are presented for illustrative purpose.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, are numerical techniques based on Importance Sampling for solving the optimal state estimation problem. The task of calibrating the state-space model is an important problem frequently faced by practitioners and the observed data may be used to estimate the parameters of the model. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed for this task accompanied with a discussion of their advantages and limitations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.

We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.

We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel optimising controller is designed that leads a slow process from a sub-optimal operational condition to the steady-state optimum in a continuous way based on dynamic information. Using standard results from optimisation theory and discrete optimal control, the solution of a steady-state optimisation problem is achieved by solving a receding-horizon optimal control problem which uses derivative and state information from the plant via a shadow model and a state-space identifier. The paper analyzes the steady-state optimality of the procedure, develops algorithms with and without control rate constraints and applies the procedure to a high fidelity simulation study of a distillation column optimisation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of parameterizing approximately algebraic curves and surfaces is an active research field, with many implications in practical applications. The problem can be treated locally or globally. We formally state the problem, in its global version for the case of algebraic curves (planar or spatial), and we report on some algorithms approaching it, as well as on the associated error distance analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vol. 1. Hearings, January 3 to February 21, 1919.- -v. 2. Appendix. Hearings before the Joint Subcommittee on Interstate and Foreign Commerce, November 20, 1916 to May 9, 1917.-- v. 3. Appendix. Hearing before the Joint Subcommittee on Interstate and Foreign Commerce, November 1, 1917 to December 19, 1917.