991 resultados para Standard metabolism
Resumo:
Les poissons vivant au sein d’une rivière sont soumis à des variations circadiennes de température pouvant influencer la croissance, la digestion et le métabolisme standard. Les modèles bioénergétiques utilisant les fonctions métaboliques pour déterminer la croissance d’un poisson ont souvent été élaborés avec des poissons acclimatés à des températures constantes. Ces modèles pourraient sous-estimer l’énergie dépensée par un poisson soumis à des températures fluctuantes. En utilisant la respirométrie par débit intermittent, les objectifs de ce travail étaient : (1) de quantifier les différences entre les taux métaboliques standards de poissons acclimatés à une température constante (20.2 oC ± 0.5 oC) et à des fluctuations circadiennes de température (19.8 oC ± 2.0 oC; 19.5 oC ± 3.0 oC) et (2) comparer deux méthodologies pour calculer les taux métaboliques standards de poissons sujets aux fluctuations circadiennes de températures : respirométrie (a) en température constante ou (b) en température fluctuante. Les poissons acclimatés à des fluctuations circadiennes de température ont des taux métaboliques standards plus élevés que des poissons acclimatés à une température constante. À 20.2 oC ± 0.5 oC, les taux métabolique standards ont été de 25% à 32% plus bas pour des poissons maintenus à une température constante que pour des poissons gardés sous des fluctuations circadiennes de température. Les méthodologies utilisées pour estimer les taux métaboliques standards de poissons sujets aux fluctuations de température offrent des résultats similaires.
Resumo:
Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks
Resumo:
Studies on conjugated linoleic acid ingestion and its effect on cardiac tissue are necessary for the safe utilization of this compound as supplement for weight loss. Male Wistar 24-rats were divided into four groups (n = 6):(C)given standard chow, water and 0.5 ml saline, twice a week by gavage; (C-CLA)receiving standard chow, water and 0.5 ml of conjugated linoleic acid, twice a week, by gavage; (S)given standard chow, saline by gavage, and 30% sucrose in its drinking water; (S-CLA)receiving standard chow, 30% sucrose in its drinking water and conjugated linoleic acid. After 42 days of treatment S rats had obesity with increased abdominal-circumference, dyslipidemia, oxidative stress and myocardial lower citrate synthase(CS) and higher lactate dehydrogenase(LDH) activities than C. Conjugated linoleic acid had no effects on morphometric parameters in C-CLA, as compared to C, but normalized morphometric parameters comparing S-CLA with S. There was a negative correlation between abdominal adiposity and resting metabolic rate. Conjugated linoleic acid effect, enhancing fasting-VO2/surface area, postprandial-carbohydrate oxidation and serum lipid hydroperoxide resembled to that of the S group. Conjugated linoleic acid induced cardiac oxidative stress in both fed conditions, and triacylglycerol accumulation in S-CLA rats. Conjugated linoleic acid depressed myocardial LDH comparing C-CLA with C, and beta-hydroxyacyl-coenzyme-A dehydrogenase/CS ratio, comparing S-CLA with S. In conclusion, dietary conjugated linoleic acid supplementation for weight loss can have long-term effects on cardiac health. Conjugated linoleic acid, isomers c9, t11 and t10, c12 presented undesirable pro-oxidant effect and induced metabolic changes in cardiac tissue. Nevertheless, despite its effect on abdominal adiposity in sucrose-rich diet condition, conjugated linoleic acid may be disadvantageous because it can lead to oxidative stress and dyslipidemic profile. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Objectives: This study evaluated the effect of magnesium dietary deficiency on bone metabolism and bone tissue around implants with established osseointegration. Materials and methods: For this, 30 rats received an implant in the right tibial metaphysis. After 60 days for healing of the implants, the animals were divided into groups according to the diet received Control group (CTL) received a standard diet with adequate magnesium content, while test group (Mg) received the same diet except for a 90% reduction of magnesium. The animals were sacrificed after 90 days for evaluation of calcium, magnesium, osteocalcin and parathyroid hormone (PTH) serum levels and the deoxypyridinoline (DPD) level in the urine. The effect of magnesium deficiency on skeletal bone tissue was evaluated by densitometry of the lumbar vertebrae, while the effect of bone tissue around titanium implants was evaluated by radiographic measurement of cortical bone thickness and bone density. The effect on biomechanical characteristics was verified by implant removal torque testing. Results: Magnesium dietary deficiency resulted in a decrease of the magnesium serum level and an increase of PTH and DPD levels (P <= 0.05). The Mg group also presented a loss of systemic bone mass decreased cortical bone thickness and lower values of removal torque of the implants (P <= 0.01). Conclusions: The present study concluded that magnesium-deficient diet had a negative influence on bone metabolism as well as on the bone tissue around the implants.
Resumo:
Objectives Low doses of ACTH [1-24] (0.1, 0.5 and 1.0 mug per 1.73 m(2)) may provide a more physiological level of adrenal stimulation than the standard 250 mug test, but not all studies have concluded that the 1.0 fig is a more sensitive screening test for central hypoadrenalism. Eight-hour infusions of high dose ACTH [1-24] have also been suggested as a means of assessing the adrenals' capacity for sustained cortisol secretion. In this study, we compared the diagnostic accuracy of three low dose ACTH tests (LDTs) and the 8-h infusion with the standard 250 jig test (HDT) and the insulin hypoglycaemia test (IHT) in patients with hypothalamic-pituitary disease. Subjects and design Three groups of subjects were studied. A healthy control group (group 1, n=9) and 33 patients with known hypothalamic or pituitary disease who were divided into group 2 (n=12, underwent IHT) and group 3 (n=21, IHT contraindicated). Six different tests were performed: a standard IHT (0.15 U/kg soluble insulin); a 60-minute 250 mug HDT; three different LDTs using 0.1 mug, 0.5 mug and 1.0 mug (all per 1.73 m(2)); and an 8-h infusion test (250 mug ACTH [1-24] at a constant rate over 8 h). Results Nine out of the 12 patients in group 2 failed the IHT. Three out of 12 patients from group 2 who clearly passed the IHT, also passed all the ACTH [1-24] stimulation tests. Seven of the 9 patients who failed the lHT, failed by a clear margin (peak cortisol
Resumo:
The development of human cell models that recapitulate hepatic functionality allows the study of metabolic pathways involved in toxicity and disease. The increased biological relevance, cost-effectiveness and high-throughput of cell models can contribute to increase the efficiency of drug development in the pharmaceutical industry. Recapitulation of liver functionality in vitro requires the development of advanced culture strategies to mimic in vivo complexity, such as 3D culture, co-cultures or biomaterials. However, complex 3D models are typically associated with poor robustness, limited scalability and compatibility with screening methods. In this work, several strategies were used to develop highly functional and reproducible spheroid-based in vitro models of human hepatocytes and HepaRG cells using stirred culture systems. In chapter 2, the isolation of human hepatocytes from resected liver tissue was implemented and a liver tissue perfusion method was optimized towards the improvement of hepatocyte isolation and aggregation efficiency, resulting in an isolation protocol compatible with 3D culture. In chapter 3, human hepatocytes were co-cultivated with mesenchymal stem cells (MSC) and the phenotype of both cell types was characterized, showing that MSC acquire a supportive stromal function and hepatocytes retain differentiated hepatic functions, stability of drug metabolism enzymes and higher viability in co-cultures. In chapter 4, a 3D alginate microencapsulation strategy for the differentiation of HepaRG cells was evaluated and compared with the standard 2D DMSO-dependent differentiation, yielding higher differentiation efficiency, comparable levels of drug metabolism activity and significantly improved biosynthetic activity. The work developed in this thesis provides novel strategies for 3D culture of human hepatic cell models, which are reproducible, scalable and compatible with screening platforms. The phenotypic and functional characterization of the in vitro systems performed contributes to the state of the art of human hepatic cell models and can be applied to the improvement of pre-clinical drug development efficiency of the process, model disease and ultimately, development of cell-based therapeutic strategies for liver failure.
Resumo:
RESUMO: Na sociedade contemporânea a diabetes tipo 2 e a obesidade estão a aumentar exponencialmente, representando um grave problema de saúde pública. De acordo com a IDF “A diabetes e a obesidade são o principal problema de saúde pública do século XXI’. Para além destas duas patologias, a prevalência de esteatose hepática não-alcoólica (NAFLD), entre a população obesa e diabética, é de cerca de 90%. O aumento da obesidade, diabetes e NAFLD tem uma forte correlação com o aumento do consumo de gorduras e açúcares, acompanhado de um decréscimo acentuado da actividade física. A obesidade, diabetes e NAFLD tem sido escrupolosamente investigada mas as terapêuticas disponíveis continuam a ser muito limitadas. Tendo em conta o número crescente e alarmante de obesos e diabéticos o conhecimento detalhado da patofisiologia da obesidade, diabetes e NAFLD, tendo em vista a necessidade extrema de desenvolvimento de novas estratégias terapêuticas, é da mais elevada urgência. O fígado é reconhecido como um orgão primordial no controlo da homeostase. No estado pós-prandial, o fígado converte a glucose em glicogénio e lípidos. Em contraste, no estado de jejum, o fígado promove a produção de glucose. Sistemas neuronais e hormonais, bem como o estado metabólico do fígado, controlam de forma muito precisa a alternância entre os diferentes substratos metabólicos, dependente do estado prandial. A insulina tem um papel central no controlo do metabolismo energético no fígado; se, por um lado, inibe a produção hepática de glucose e corpos cetónicos, por outro, promove a glicólise e a lipogénese. O metabolismo energético no fígado é também regulado por vários factores de transcrição e co-reguladores que, por sua vez, são regulados pela insulina, glucagina e outras hormonas metabólicas. Em conjunto, todos estes factores e reguladores vão controlar de forma muito estreita a gluconeogénese, a β-oxidação e a lipogénese, no fígado. Para além dos já conhecidos reguladores do metabolismo hepático, novas moléculas têm sido estudadas como tendo um papel fundamental na regulação do metabolismo energético no fígado. Qualquer desequilíbrio no metabolismo hepático vai contribuir para a insulino-resistência, NAFLD e diabetes tipo 2. O principal objectivo do trabalho de investigação aqui apresentado é o contributo para o estudo detalhado da patogénese da diabetes e obesidade, num contexto de dietas ricas em açúcares e gorduras, e com a perspectiva de explorar novas estratégias terapêuticas. Os objectivos específicos deste trabalho eram: primeiro, determinar se o tratamento com glutationo (GSH) e óxido nítrico (NO) era suficiente para melhorar a insulino-resistência associada ao elevado consumo de sacarose; segundo, determinar o papel da Rho-kinase 1 (ROCK1) na regulação do metabolismo hepático da glucose e dos lípidos; e terceiro, estudar o efeito do metilsulfonilmetano (MSM) em doenças metabólicas associadas à obesidade. Na primeira parte deste trabalho de investigação foram utilizados ratos Wistar machos sujeitos a uma dieta rica em sacarose (HS). Tal como esperado, estes animais apresentavam insulino-resistência e hiperinsulinémia. A dieta HS levou ao aumento dos níveis hepáticos de NO e ao decréscimo dos níveis de GSH no fígado. Em jejum, a administração intraportal de GSH e NO, a animais saudáveis promoveu um aumento significativo da sensibilidade à insulina. Também nestes animais, a administração intravenosa de S-nitrosotióis, compostos orgânicos que contém um grupo nitroso acoplado a um átomo de enxofre de um tiol, promoveu o aumento significativo da sensibilidade à insulina. Pelo contrário, em animais sujeitos à dieta HS, as doses padrão de GSH + NO e de S-nitrosotióis não conseguiram promover o aumento da sensibilidade à insulina. No entanto, ao aumentar a dose de S-nitrosotióis administrados por via intravenosa, foi possível observar o aumento da sensibilidade à insulina dependente da dose, indicando um possível papel dos S-nitrosotióis como sensibilizadores de insulina. O estudo detalhado do papel dos S-nitrosotióis na via de sinalização da insulina revelou que há um aumento da fosforilação do receptor da insulina (IR) e da proteína cinase B (Akt), sugerindo um efeito dos S-nitrosotióis nesta via de sinalização. Os resultados apresentados nesta primeira parte sugerem que os S-nitrosotióis promovem a correcta acção da insulina, podendo vir a ser importantes alvos terapêuticos. Na segunda parte deste trabalho de investigação utilizámos murganhos, com uma delecção específica da ROCK1 no fígado, e sujeitos a uma dieta rica em lípidos (HFD). Foi possível concluir que a ausência da ROCK1 no fígado previne a obesidade, melhora a sensibilidade à insulina e protege contra a esteatose hepática. A ausência de ROCK1 no fígado levou a um decréscimo significativo da expressão génica de genes associados à lipogénese, com uma diminuição acentuada do fluxo metabólico associado a esta via. Pelo contrário, a sobreexpressão de ROCK1, exclusivamente no fígado, promove a insulino-resistência e a esteatose hepática no contexto de obesidade induzida pela dieta. Para além disto, a delecção da ROCK1 no fígado de animais obesos e diabéticos, os murganhos deficientes em leptina, corroborou os dados obtidos no primeiro modelo animal, com a franca melhoria da hiperglicémia, hiperinsulinémia e esteatose hepática. Os dados que compõem esta parte do trabalho de investigação sugerem que a ROCK1 tem um papel crucial na regulação do metabolismo lipídico. Na terceira e última parte deste trabalho de investigação foi investigado o efeito do composto metilsulfunilmetano (MSM), um composto organosulfúrico naturalmente presente em plantas e utilizado também como suplemento dietético, em murganhos obesos e insulino-resistentes, por exposição a uma dieta rica em lípidos (DIO). O tratamento com MSM melhorou a insulino-resistência e protegeu contra a esteatose hepática. O conteúdo hepático em triglicéridos e colesterol também diminuíu de forma significativa nos animais DIO sujeitos ao tratamento com MSM, bem como a expressão génica associada à lipogénese. Para além disto, o tratamento com MSM levou a uma diminuição da expressão génica associada à inflamação. De realçar que o tratamento com MSM levou a uma melhoria do perfil hematopoiético destes animais, tanto na medula óssea como no sangue. Para comprovar o efeito benéfico do MSM na obesidade e insulino-resistência utilizámos murganhos deficientes no receptor da leptina, e por isso obesos e diabéticos, tendo observado um perfil semelhante ao obtido para murganhos sujeitos a uma dieta rica em lípidos e tratados com MSM. Concluímos, através dos dados recolhidos, que o MSM como suplemento pode ter efeitos benéficos na hiperinsulinémia, insulino-resistência e inflamação que caracterizam a diabetes tipo 2. Em resumo, os dados obtidos neste trabalho de investigação mostram que os S-nitrosotióis podem ter um papel importante como sensibilizadores da insulina, promovendo um aumento da sensibilidade à insulina num contexto de dietas ricas em sacarose. Para além disto, estudos in vitro, sugerem que os S-nitrosotióis regulam, especificamente, a via de sinalização da insulina. Este trabalho teve também como objectivo o estudo da ROCK1 como regulador do metabolismo da glucose e dos lípidos no fígado. Através do estudo de animais com uma delecção ou uma sobreexpressão da ROCK1 no fígado mostrou-se que esta tem um papel crucial na patogénese da obesidade e diabetes tipo 2, especificamente através do controlo da lipogénese de novo. Finalmente, foi também objectivo deste trabalho, explorar o efeito do MSM em animais DIO e deficientes em leptina. O tratamento com MSM protege de forma evidente contra a obesidade e insulino-resistência, com especial enfâse para a capacidade que esta molécula demonstrou ter na protecção contra a inflamação. Em conjunto os vários estudos aqui apresentados mostram que tanto os S-nitrosotióis como a ROCK1 têm um papel na patogénese da obesidade e diabetes tipo 2 e que a utilização de MSM como suplemento às terapêuticas convencionais pode ter um papel no tratamentos de doenças metabólicas.-------------------------------ABSTRACT: In modern western societies type 2 diabetes and obesity are increasing exponentially, representing a somber public concern. According to the International Diabetes Federation (IDF) ‘Diabetes and Obesity are the biggest public health challenges of the 21st century’. Aside from these the prevalence of nonalcoholic fatty liver disease (NAFLD), among the diabetic and obese population, is as high as 90%. It is now well established that the increase in obesity, diabetes and NAFLD strongly correlates with an increase in fat and sugar intake in our diet, alongside physical inactivity. The pathogenesis of obesity, diabetes and NAFLD has been thoroughly studied but the treatment options available are still narrow. Considering the alarming number in the obese and diabetic population the complete understanding of the pathogenesis, keeping in mind that new therapeutic strategies need to be attained, is of the highest urgency. The liver has been well established as a fundamental organ in regulating whole-body homeostasis. In the fed state the liver converts the glucose into glycogen and lipids. Conversely, in the fasted state, glucose will be produced in the liver. Neuronal and hormonal systems, as well as the hepatic metabolic states, tightly control the fast to fed switch in metabolic fuels. Insulin has a central role in controlling hepatic energy metabolism, by suppressing glucose production and ketogenesis, while stimulating glycolysis and lipogenesis. Liver energy metabolism is also regulated by various transcription factors and coregulators that are, in turn, regulated by insulin, glucagon and other metabolic hormones. Together, these regulators will act to control gluconeogenesis, β-oxidation and lipogenesis in the liver. Aside from the well-established regulators of liver energy metabolism new molecules are being studied has having a role in regulating hepatic metabolism. Any imbalance in the liver energy metabolism is a major contributor to insulin resistance, NAFLD and type 2 diabetes. The overall goal of this research work was to contribute to the understanding of the pathogenesis of diabetes and obesity, on a setting of high-sucrose and high-fat diets, and to explore potential therapeutic options. The specific aims were: first, to determine if treatment with glutathione (GSH) and nitric oxide (NO) was sufficient to ameliorate insulin resistance induced by high-sucrose feeding; second, to determine the physiological role of rho-kinase 1 (ROCK1) in regulating hepatic and lipid metabolism; and third, to study the effect of methylsulfonylmethane (MSM) on obesity-linked metabolic disorders. In the first part of this research work we used male Wistar rats fed a high-sucrose (HS) diet. As expected, rats fed a HS diet were insulin resistant and hyperinsulinemic. HS feeding increased hepatic levels of NO, while decreasing GSH. In fasted healthy animals administration of both GSH and NO, to the liver, was able to increase insulin sensitivity. Intravenous administration of S-nitrosothiols, organic compounds containing a nitroso group attached to the sulfur atom of a thiol, in fasted control animals also increased insulin sensitivity. Under HS feeding the standard doses of GSH + NO and S-nitrosothiols were unable to promote an increase in insulin sensitivity. However, the intravenous administration of increasing concentrations of S-nitrosothiols was able to restore insulin sensitivity, suggesting that S-nitrosothiols have an insulin sensitizing effect. Investigation of the effect of S-nitrosothiols on the insulin signaling pathway showed increased phosphorylation of the insulin receptor (IR) and protein kinase B (Akt), suggesting that S-nitrosothiols may have an effect on the insulin signaling pathway. Together, these data showed that S-nitrosothiols promote normal insulin action, suggesting that they may act as potential pharmacological tools. In the second part of this research work we used liver-specific ROCK1 knockout mice fed a high-fat (HF) diet. Liver-specific deletion of ROCK1 prevented obesity, improved insulin sensitivity and protected against hepatic steatosis. Deficiency of ROCK1 in the liver caused a significant decrease in the gene expression of lipogenesis associated gene, ultimately leading to decreased lipogenesis. Contrariwise, ROCK1 overexpression in the liver promoted insulin resistance and hepatic steatosis in diet-induced obesity. Furthermore, liver-specific deletion of ROCK1 in obese and diabetic mice, the leptin-deficient mice, improved the typical hyperglycemia, hyperinsulinemia and liver steatosis. Together, these data identify ROCK1 as a crucial regulator of lipid metabolism. In the third and final part of this research work we investigated the effect of MSM, an organosulfur compound naturally found in plants and used as a dietary supplement, on diet-induced obese (DIO) and insulin resistant mice. MSM treatment ameliorated insulin resistance and protected against hepatosteatosis. Hepatic content in triglycerides and cholesterol was significantly decreased by MSM treatment, as well as lipogenesis associated gene expression. Furthermore, MSM treated mice had decreased inflammation associated gene expression in the liver. Importantly, FACS analysis showed that MSM treatment rescued the inflammatory hematopoietic phenotype of DIO mice in the bone marrow and the peripheral blood. Moreover, MSM treatment of the obese and diabetic mice, the leptin-deficient mice, resulted in similar effects as the ones observed for DIO mice. Collectively, these data suggest that MSM supplementation has a beneficial effect on hyperinsulinemia, insulin resistance and inflammation, which are often found in type 2 diabetes. In conclusion, this research work showed that S-nitrosothiols may play a role as insulin sensitizers, restoring insulin sensitivity in a setting of high-sucrose induced insulin resistance. Furthermore, in vitro studies suggest that S-nitrosothiols specifically regulate the insulin signaling pathway. This research work also investigated the role of hepatic ROCK1 in regulation of glucose and lipid metabolism. Using liver-specific ROCK 1 knockout and ROCK1 overexpressing mice it was shown that ROCK1 plays a role in the pathogenesis of obesity and type 2 diabetes, specifically through regulation of the de novo lipogenesis pathway. Finally, this research work aimed to explore the effect of MSM in DIO and leptin receptor-deficient mice. MSM strongly protects against obesity and insulin resistance, moreover showed a robust ability to decrease inflammation. Together, the individual studies that compose this dissertation showed that S-nitrosothiols and ROCK1 play a role in the pathogenesis of obesity and type 2 diabetes and that MSM supplementation may have a role in the treatment of metabolic disorders.
Resumo:
Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.
Resumo:
PURPOSE: When treating peripheral ectatic disease-like pellucid marginal degeneration (PMD), corneal cross-linking with UV-A and riboflavin (CXL) must be applied eccentrically to the periphery of the lower cornea, partly irradiating the corneal limbus. Here, we investigated the effect of standard and double-standard fluence corneal cross-linking with riboflavin and UV-A (CXL) on cornea and corneal limbus in the rabbit eye in vivo. METHODS: Epithelium-off CXL was performed in male New Zealand White rabbits with two irradiation diameters (7 mm central cornea, 13 mm cornea and limbus), using standard fluence (5.4 J/cm(2)) and double-standard fluence (10.8 J/cm(2)) settings. Controls were subjected to epithelial removal and riboflavin instillation, but were not irradiated with UV-A. Following CXL, animals were examined daily until complete closure of the epithelium, and at 7, 14, 21, and 28 days. Animals were killed and a corneoscleral button was excised and processed for light microscopy and immunohistochemistry. RESULTS: For both irradiation diameters and fluences tested, no signs of endothelial damage or limbal vessel thrombosis were observed, and time to re-epithelialization was similar to untreated controls. Histological and immunohistochemical analysis revealed no differences in the p63 putative stem cell marker expression pattern. CONCLUSIONS: Even when using fluence twice as high as the one used in current clinical CXL settings, circumferential UV-A irradiation of the corneal limbus does not alter the regenerative capacity of the limbal epithelial cells, and the expression pattern of the putative stem cell marker p63 remains unchanged. This suggests that eccentric CXL may be performed safely in PMD.
Resumo:
Summary : Lipid metabolism disorders, leading to obesity and cardiovascular diseases, are a major public health issue worldwide. These diseases have been treated by drugs and surgery, leading to tremendous costs and secondary morbidity. The aim of this thesis work is to investigate the mechanisms of actions of a new, micronutrition-based, approach to prevent obesity and cardiovascular diseases. This specific combination of micronutrients, Lipistase, incorporated into any dietary ail can be used in the daily food. Micronutrients are substances used by the living organism in small quantities to maintain physiological homeostasis. However, the human body is not able to produce them and has to obtain them from dietary sources. The combination of micronutrients investigated here, is composed of 26 compounds including trace elements, vitamins, minerals, ails and plant extracts, known to have individually a beneficial effect on lipid metabolism regulation. These specific micronutrients are used for the first time in a combinatorial mode targeting several metabolic pathways for better homeostasis control as opposed to a single target treatment, either chemical or natural. Short and long term studies, in different mouse strains, showed a significant decrease in plasma triglycerides, body weight gain and body fat mass in animals that were fed with a standard diet containing Lipistase. Additionally, a greatly reduced fat accumulation was observed in adipose tissue and liver of Lipistase-treated animals, while lipid and glucose utilization by skeletal muscle was enhanced. Moreover, the size of atherosclerotic plaques was significantly reduced in mice whose masher was treated during pregnancy and suckling, without showing any adverse effect. Finally, Lipistase has been shown to increase longevity by 20%. The control mice that did not receive Lipistase in their diet did not show all these beneficial effects. These micronutrients are used at the lowest dosage ever reported for treating Lipid disorders, resulting in far much lower costs as well as probably a higher safety. This is the first approach being very suitable for an effective large scale prevention policy for obesity and cardiovascular diseases, like iodine in dietary salt has been for goiter. Résumé : Les dysrégulations du métabolisme des lipids, à l'origine d'obésité et de maladies cardiovasculaires, sont un problème de santé publique majeur et mondial. Ces maladies impliquent des traitements médicamenteux et chirurgicaux dont le coût la morbidité secondaire sont très important. Le but de ce travail de thèse est d'étudier les mécanismes d'action d'une nouvelle approche préventive, basée sur la micronutrition. Cette combinaison spécifique de micronutriments, Lipistase, peut être incorporée dans n'importe quelle huile alimentaire et utilisée dans l'alimentation quotidienne. Les micronutrirnents sont des substances essentielles, à très faibles doses, pour le maintien de l'homéostasie physiologique des organismes vivants. Cependant, étant incapable de les synthétiser, le corps humain est dépendant en cela de l'apport alimentaire. La combinaison de micronutriments que nous avons étudié contient 26 composants, incluant des extraits de plantes, des huiles, des vitamines, des métaux et des minéraux, tous connus pour avoir individuellement des effets bénéfiques sur la régulation du métabolisme des lipides. Ces micronutriments spécifiques sont utilisés pour la première fois en mode combinatoire, ciblant ainsi plusieurs voies métaboliques pour un meilleur control de l'homéostasie, par opposition monothérapies chimiques ou naturelles. Des expériences de court et long terme, avec divers modèles de souris, ont montré une diminution significative des taux de triglycérides plasmatiques, de la prise de poids et de la masse graisseuse corporelle chez les animaux qui ont reçu Lipistase dans la nourriture standard. Une accumulation significativement moins importante des graisses a été observée dans le tissu adipeux et hépatique des souris traitées, alors que l'utilisation des lipides et glucose a été favorisée dans le muscle. En outre, la taille des plaques d'athérosclérose aété significativement réduite chez les souris dont la mère a été traitée pendant la grossesse et l'allaitement, sans montrer aucun effet indésirable. Enfin, les souris traitées par Lipistase ont vécu 20% plus longtèmps. Les souris contrôles qui n'ont pas reçu Lipistase dans la nourriture n'ont montré aucun de ces effets bénéfiques. Ces micronutriments sont utilisés au dosage le plus faible jamais rapporté pour le traitement des maladies du métabolisme lipidique, permettant ainsi un coût plus faible et surtout une meilleure sécurité. C'est une approche adéquate pour une politique de prévention de santé publique à large échelle de l'obésité et des maladies cardiovasculaires. C'est en cela et sous bien d'autres aspects, une première dans la prise en charge des maladies du métabolisme lipidique et pourrait même être pour ces dernières ce que l'iode du sel de cuisine a été pour le goitre.
Resumo:
Saccharomyces cerevisiae cells contain three omega-class glutathione transferases with glutaredoxin activity (Gto1, Gto2, and Gto3), in addition to two glutathione transferases (Gtt1 and Gtt2) not classifiable into standard classes. Gto1 is located at the peroxisomes, where it is targeted through a PTS1-type sequence, whereas Gto2 and Gto3 are in the cytosol. Among the GTO genes, GTO2 shows the strongest induction of expression by agents such as diamide, 1-chloro-2,4-dinitrobenzene, tert-butyl hydroperoxide or cadmium, in a manner that is dependent on transcriptional factors Yap1 and/or Msn2/4. Diamide and 1-chloro-2,4-dinitrobenzene (causing depletion of reduced glutathione) also induce expression of GTO1 over basal levels. Phenotypic analyses with single and multiple mutants in the S. cerevisiae glutathione transferase genes show that, in the absence of Gto1 and the two Gtt proteins, cells display increased sensitivity to cadmium. A gto1-null mutant also shows growth defects on oleic acid-based medium, which is indicative of abnormal peroxisomal functions, and altered expression of genes related to sulfur amino acid metabolism. As a consequence, growth of the gto1 mutant is delayed in growth medium without lysine, serine, or threonine, and the mutant cells have low levels of reduced glutathione. The role of Gto1 at the S. cerevisiae peroxisomes could be related to the redox regulation of the Str3 cystathionine -lyase protein. This protein is also located at the peroxisomes in S. cerevisiae, where it is involved in transulfuration of cysteine into homocysteine, and requires a conserved cysteine residue for its biological activity.
Resumo:
This study aimed to evaluate the effects of exercise training on triglyceride deposition and the expression of musclin and glucose transporter 4 (GLUT4) in a rat model of insulin resistance. Thirty male Sprague-Dawley rats (8 weeks old, weight 160±10 g) were fed a high-fat diet (40% calories from fat) and randomly divided into high-fat control group and swimming intervention group. Rats fed with standard food served as normal control. We found that 8-week swimming intervention significantly decreased body weight (from 516.23±46.27 to 455.43±32.55 g) and visceral fat content (from 39.36±2.50 to 33.02±2.24 g) but increased insulin sensitivity index of the rats fed with a high-fat diet. Moreover, swimming intervention improved serum levels of TG (from 1.40±0.83 to 0.58±0.26 mmol/L) and free fatty acids (from 837.80±164.25 to 556.38±144.77 μEq/L) as well as muscle triglycerides deposition (from 0.55±0.06 to 0.45±0.02 mmol/g) in rats fed a high-fat diet. Compared with rats fed a standard food, musclin expression was significantly elevated, while GLUT4 expression was decreased in the muscles of rats fed a high-fat diet. In sharp contrast, swimming intervention significantly reduced the expression of musclin and increased the expression of GLUT4 in the muscles of rats fed a high-fat diet. In conclusion, increased musclin expression may be associated with insulin resistance in skeletal muscle, and exercise training improves lipid metabolism and insulin sensitivity probably by upregulating GLUT4 and downregulating musclin.
Resumo:
The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).
Resumo:
The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability
Resumo:
OBJECTIVE: To investigate relationships between body fat and its distribution and carbohydrate and lipid tolerance using statistical comparisons in post-menopausal women. DESIGN: Sequential meal, postprandial study (600 min) which included a mixed standard breakfast (30 g fat) and lunch (44 g fat) given at 0 and 270 min, respectively, after an overnight fast. SUBJECTS: Twenty-eight post-menopausal women with a diverse range of body weight (body mass index (BMI), mean 27.2, range 20.5-38.8 kg/m2) and abdominal fat deposition (waist, mean 86.4, range 63.5-124.0 cm). Women with BMI <18 or >37 kg/m2, age>80 y and taking hormone replacement therapy (HRT) were excluded. MEASUREMENTS: Anthropometric measurements were performed to assess total and regional fat deposits. The concentrations of plasma total cholesterol, high density lipoprotein (HDL) cholesterol, triacylglycerol (TAG), glucose, insulin (ins), non-esterified fatty acids (NEFA) and apolipoprotein (apo) B-48 were analysed in plasma collected at baseline (fasted state) and at 13 postprandial time points for a 600 min period. RESULTS: Insulin concentrations in the fasted and fed state were significantly correlated with all measures of adiposity (BMI, waist, waist-hip ratio (W/H), waist-height ratio (W/Ht) and sum of skinfold thickness (SSk)). After controlling for BMI, waist remained significantly and positively associated with fasted insulin (r=0.559) with waist contributing 53% to the variability after multiple regression analysis. After controlling for waist, BMI remained significantly correlated with postprandial (IAUC) insulin (r=0.535) contributing 66% of the variability of this measurement. No association was found between any measures of adiposity and glucose concentrations, although insulin concentration in relation to glucose concentration (glucose-insulin ratio) was significantly negatively correlated with all measures of adiposity. A significant positive correlation was found between fasted TAG and BMI (r=0.416), waist (r=0.393) and Ssk (r=0.457) and postprandial (AUC) TAG with BMI (r=0.385) and Ssk (r=0.406). A significantly higher postprandial apolipoprotein (apo) B-48 response was observed in those women with high BMI (>27 kg/m2). Fasting levels of NEFA were significantly and positively correlated with all measures of adiposity (except W/H). No association was found between cholesterol containing particles and any measure of adiposity. CONCLUSION: Hyperinsulinaemia associated with increasing body fat and central fat distribution is associated with normal glucose but not TAG or NEFA concentrations in postmenopausal women.