941 resultados para Stainless steels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stainless steels are among the most investigated materials on biofouling and microbially-influenced corrosion (MIC). Although, generally corrosion-resistant owing to tenacious and passive surface film due to chromium, stainless steels are susceptible to extensive biofouling in subsoil, fresh water and sea water and chemical process environments. Biofilms influence their corrosion behavior due to corrosion potential ennoblement and sub-surface pitting. Both aerobic and anaerobic microorganisms catalyse microbial corrosion of stainless steels through biotic and abiotic mechanisms. MIC of stainless steels is common adjacent to welds at the heat-affected zone. Both austenite and delta ferrite phases may be susceptible. Even super stainless steels are found to be amenable to biofouling and MIC. Microbiological, electrochemical as well as physicochemical aspects of MIC pertaining to stainless steels in different environments are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pitting corrosion of stainless steels, one of the classical problems in materials science and electrochemistry, is generally believed to originate from the local dissolution in MnS inclusions, which are more or less ubiquitous in stainless steels. However, the initial location where MnS dissolution preferentially occurs is known to be unpredictable, which makes pitting corrosion a major concern. In this work we show, at an atomic scale, the initial site where MnS starts to dissolve in the presence of salt water. Using in situ ex-environment transmission electron microscopy (TEM), we found a number of nano-sized octahedral MnCr2O4 crystals (with a spinel structure and a space group of Fd (3) over barm) embedded in the MnS medium, generating local MnCr2O4/MnS nano-galvanic cells. The TEM experiments combined with first-principles calculations clarified that the nano-octahedron, enclosed by eight {1 1 1} facets with metal terminations, is "malignant", and this acts as the reactive site and catalyses the dissolution of MnS. This work not only uncovers the origin of MnS dissolution in stainless steels, but also presents an atomic-scale evolution in a material's failure which may occur in a wide range of engineering alloys and biomedical instruments serving in wet environments. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two simulative test methods were used to study galling in sheet forming of two types of stainlesssteel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. Thepin-on-disc test was used to analyse the galling resistance of different combinations of sheet materials and lubricants. The strip reduction test, a severe sheet forming tribology test was used to simulate the conditionsduring ironing. This investigation shows that the risk of galling is highly dependent on the surface texture of theduplex steel. Trials were also performed in an industrial tool used for high volume production of pumpcomponents, to compare forming of LDX 2101 and austenitic stainless steel with equal thickness. The forming forces, the geometry and the strains in the sheet material were compared for the same component.It was found that LDX steels can be formed to high strain levels in tools normally applied for forming ofaustenitic steels, but tool adaptations are needed to comply with the higher strength and springback of thematerial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present work was to undertake a detailed investigation of the softening mechanisms during hot deformation of a 21Cr-10Ni-3Mo (steel A) and a 21Cr-8Ni-3Mo (steel B) austenite/ferrite duplex stainless steels containing about 60% and 30% of austenite, respectively. The steels were subjected to hot deformation in torsion performed at 900 ºC and 1200 ºC using a strain rate of 0.7 s-1 to several strain levels. Quantitative optical and transmission electron microscopy were used in the investigation. Austenite was observed to soften via dynamic recovery (DRV) and dynamic recrystallisation (DRX) accompanied by DRV for the deformation temperatures of 900 °C and 1200 °C, respectively, for the both steels studied. DRX of austenite largely occurred through strain-induced grain boundary migration, complemented by (multiple) twinning, and developed significantly faster in steel A than in steel B, indicating that considerably larger strains partitioned into austenite in the former steel during deformation at 1200 °C. The above softening mechanism was accompanied by the formation of DRX grains from subgrains along the austenite/ferrite interface and by large-scale subgrain coalescence. At 900°C, stressassisted phase transitions between austenite and ferrite were observed, characterised by dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the microstructure with increasing strain. These processes appeared to be significantly more widespread in steel B. The softening mechanism within ferrite for the both steels studied was classified as “continuous DRX”, characterised by a gradual increase in misorientations between neighbouring subgrains with strain, for the both deformation temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure evolution and softening processes occurring in 22Cr-19Ni-3Mo austenitic and 21Cr-10Ni-3Mo duplex stainless steels deformed in torsion at 900 and 1200 °C were studied in the present work. Austenite was observed to soften in both steels via dynamic recovery (DRV) and dynamic recrystallisation (DRX) for the low and high deformation temperatures, respectively. At 900 °C, an "organised", self-screening austenite deformation substructure largely comprising microbands, locally accompanied by micro-shear bands, was formed. By contrast, a "random", accommodating austenite deformation substructure composed of equiaxed subgrains formed at 1200 °C. In the single-phase steel, DRX of austenite largely occurred through straininduced grain boundary migration accompanied by (multiple) twinning. In the duplex steel, this softening mechanism was complemented by the formation of DRX grains through subgrain growth in the austenite/ferrite interface regions and by large-scale subgrain coalescence. At 900 °C, the duplex steel displayed limited stress-assisted phase transformations between austenite and ferrite, characterised by the dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the transformed regions with strain. The softening process within ferrite was classified as "extended DRV", characterised by a continuous increase in misorientations across the sub-boundaries with strain, for both deformation temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The castability and microstructures produced from strip casting simulations of three compositions in the 200 series stainless steels have been examined. The nucleation density was similar for all three compositions.The as-cast microstructure showed very fine austenite grains of 10–20 μm in width. Retained delta ferrite was observed in the inter-dendritic regions, and was likely to be stabilised by the segregation of Cr into these regions. An analysis of the crystallography expected of different solidification sequences is presented, but a strict adherence to the Kurdjumov-Sachs orientation relationship was not found in these samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 The thesis work was aimed at resolving long established issues with difficult-to-machine materials. The main thesis contribution, is the academic community now has a better understanding of how the issue of built-up edge is occurring when machining duplex stainless steel alloys, which will aid in the machining sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Powder metallurgy (PM) consists in obtaining pieces of powder metal that are processed at high temperatures and pressure. Due to its characteristic manufacturing process, the materials can have a specific and controlled porosity, which makes it possible to obtain porous parts such as ball bearings, gears, and roller bearings, etc. This porosity is what made us think about how easy biofouling would be on these materials and its possible environmental applications.