903 resultados para Staff detection and removal
Resumo:
There are several methods for identifying carious dentinal tissue aiming to avoid removal of healthy dentinal tissue. Objectives: The purpose of this study was to test different methods for the detection of carious dentinal tissue regarding the amount of carious tissue removed and the remaining dentin microhardness after caries removal. Material and methods: The dentin surfaces of 20 bovine teeth were exposed and half of the surface was protected with nail polish. Cariogenic challenge was performed by immersion in a demineralizing solution for 14 days. After transverse cross-section of the crown, the specimens were divided into four groups (n=10), according to the method used to identify and remove the carious tissue: "Papacarie", Caries-detector dye, DIAGNOdent and Tactile method. After caries removal, the cross-sectional surface was included in acrylic resin and polished. In a microhardness tester, the removed dentin thickness and the Vickers microhardness of the following regions were evaluated: remaining dentin after caries removal and superficial and deep healthy dentin. Results: ANOVA and Tukey's test (alpha=0.05) were performed, except for DIAGNOdent, which did not detect the presence of caries. Results for removed dentin thickness were: "Papacarie" (424.7 +/- 105.0; a), Caries-detector dye (370.5 +/- 78.3; ab), Tactile method (322.8 +/- 51.5; bc). Results for the remaining dentin microhardness were: "Papacarie" (42.2 +/- 10.5; bc), Caries-detector dye (44.6 +/- 11.8; bc), Tactile method (24.3 +/- 9.0; d). Conclusions: DIAGNOdent did not detect the presence of carious tissue; Tactile method and "Papacarie" resulted in the least and the most dentinal thickness removal, respectively; Tactile method differed significantly from "Papacarie" and Caries-detector dye in terms of the remaining dentin microhardness, and Tactile method was the one which presented the lowest microhardness values.
Resumo:
The biopharmaceutical industry has a growing demand and an increasing need to improve the current virus purification technologies, especially as more and more vaccines are produced from cell-culture derived virus particles. Downstream purification strategies can be expensive and account for 70% of the overall manufacturing costs. The economic pressure and purification processes can be particularly challenging when the virus to be purified is small, as in our model virus, porcine parvovirus (PPV). Our efforts are focused on designing an easy, economical, scalable and efficient system for virus purification, and we focused on aqueous two-phase systems. Industry acceptable standards for virus vaccine recovery can be as low as 30% due to demand of high final titer, virus transduction inhibitors and presence of empty or defective virus capsids as impurities. We have overcome these shortcomings by recovering a high 64% of infectious virus using an aqueous two-phase system. We used high molecular weight polymer and citrate salt to achieve a good yield and eliminated the major contaminant bovine serum albumin. Viruses are also studied for ensuring pure and safe drinking water. Low pressure microfiltrations are continuously being investigated for water filters as they allow high permeate flux and low fouling. Viruses such as PPV are small enough to pass through the microporous membranes. Control of viruses in water is crucial for public health and we have designed an affinity based membrane filter to capture virus. Nanofibers have a high surface to volume ratio providing a highly accessible surface area for virus adsorption. Chitosan an insoluble, biocompatible and biodegradable polymer was used for adsorbing trimer peptide WRW. About 0.2 μmoles of cysteine terminal WRW peptide was conjugated to amine terminal chitosan using maleimide conjugation chemistry. We achieved 90-99% virus removal from water adjusted to a neutral pH. The virus removal from affinity based chitosan was attributed to electrostatic and hydrophobic driven binding effect.
Resumo:
We propose a novel bolt-on module capable of boosting the robustness of various single compact 2D gait representations. Gait recognition is negatively influenced by covariate factors including clothing and time which alter the natural gait appearance and motion. Contrary to traditional gait recognition, our bolt-on module remedies this by a dedicated covariate factor detection and removal procedure which we quantitatively and qualitatively evaluate. The fundamental concept of the bolt-on module is founded on exploiting the pixel-wise composition of covariate factors. Results demonstrate how our bolt-on module is a powerful component leading to significant improvements across gait representations and datasets yielding state-of-the-art results.
Resumo:
Staff detection and removal is one of the most important issues in optical music recognition (OMR) tasks since common approaches for symbol detection and classification are based on this process. Due to its complexity, staff detection and removal is often inaccurate, leading to a great number of errors in posterior stages. For this reason, a new approach that avoids this stage is proposed in this paper, which is expected to overcome these drawbacks. Our approach is put into practice in a case of study focused on scores written in white mensural notation. Symbol detection is performed by using the vertical projection of the staves. The cross-correlation operator for template matching is used at the classification stage. The goodness of our proposal is shown in an experiment in which our proposal attains an extraction rate of 96 % and a classification rate of 92 %, on average. The results found have reinforced the idea of pursuing a new research line in OMR systems without the need of the removal of staff lines.
Resumo:
This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.
Resumo:
MOTIVATION: High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. Results: We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays.
Resumo:
This paper specifically examines the implantation of a microelectrode array into the median nerve of the left arm of a healthy male volunteer. The objective was to establish a bi-directional link between the human nervous system and a computer, via a unique interface module. This is the first time that such a device has been used with a healthy human. The aim of the study was to assess the efficacy, compatibility, and long term operability of the neural implant in allowing the subject to perceive feedback stimulation and for neural activity to be detected and processed such that the subject could interact with remote technologies. A case study demonstrating real-time control of an instrumented prosthetic hand by means of the bi-directional link is given. The implantation did not result in infection, and scanning electron microscope images of the implant post extraction have not indicated significant rejection of the implant by the body. No perceivable loss of hand sensation or motion control was experienced by the subject while the implant was in place, and further testing of the subject following the removal of the implant has not indicated any measurable long term defects. The implant was extracted after 96 days. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
The recovery and stability of DNA for the detection and genotyping of HPV in UCM-containing specimens, after exposure to denaturing reagents and stored for up to 2 years were evaluated. Samples were collected from 60 women who had cervical cytology specimens harboring cervical intraepithelial neoplasia (CIN) 2 or 3. All samples were stored in UCM and had been frozen at -20 degrees C following the addition of the denaturing reagent (sodium hydroxide) and the removal of the aliquot required for Hybrid Capture 2 testing for the identification of HPV DNA. The samples had been stored for 6, 12 and 24 months (20 samples for each storage time). HPV DNA extraction was performed according to a protocol designed specifically and the presence and quality of DNA was confirmed by human P-globin detection using the consensus primers G73 and G74. HPV DNA was amplified using the consensus primers PGMY09 and PGMY11, and reverse line-blot hybridization was used to detect type-specific amplicons for 37 HPV types. The DNA extracted from the denatured specimen was recovered in 57/60 (95%) of the samples. HPV DNA was detected in 56/57 (98%) of the recovered samples. Twenty-six of the 56 samples recovered (48%) were genotyped successfully. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this thesis work, is to propose an algorithm to detect the faces in a digital image with complex background. A lot of work has already been done in the area of face detection, but drawback of some face detection algorithms is the lack of ability to detect faces with closed eyes and open mouth. Thus facial features form an important basis for detection. The current thesis work focuses on detection of faces based on facial objects. The procedure is composed of three different phases: segmentation phase, filtering phase and localization phase. In segmentation phase, the algorithm utilizes color segmentation to isolate human skin color based on its chrominance properties. In filtering phase, Minkowski addition based object removal (Morphological operations) has been used to remove the non-skin regions. In the last phase, Image Processing and Computer Vision methods have been used to find the existence of facial components in the skin regions.This method is effective on detecting a face region with closed eyes, open mouth and a half profile face. The experiment’s results demonstrated that the detection accuracy is around 85.4% and the detection speed is faster when compared to neural network method and other techniques.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Contaminants of emerging concern are increasingly detected in the water cycle, with endocrine-disrupting chemicals (EDCs) receiving attention due to their potential to cause adverse health effects even at low concentrations. Although the EU has recently introduced some EDCs into drinking water legislation, most drinking water treatment plants (DWTPs) are not designed to remove EDCs, making their detection and removal in DWTPs an important challenge. The aim of this doctoral project was to investigate hormones and phenolic compounds as suspected EDCs in drinking waters across the Romagna area (Italy). The main objectives were to assess the occurrence of considered contaminants in source and drinking water from three DWTPs, characterize the effectiveness of removal by different water treatment processes, and evaluate the potential biological impact on drinking water and human health. Specifically, a complementary approach of target chemical analysis and effect-based methods was adopted to explore drinking water quality, treatment efficacy, and biological potential. This study found that nonylphenol (NP) was prevalent in all samples, followed by BPA. Sporadic contamination of hormones was found only in source waters. Although the measured EDC concentrations in drinking water did not exceed threshold guideline values, the potential role of DWTPs as an additional source of EDC contamination should be considered. Significant increases in BPA and NP levels were observed during water treatment steps, which were also reflected in estrogenic and mutagenic responses in water samples after the ultrafiltration. This highlights the need to monitor water quality during various treatment processes to improve the efficiency of DWTPs. Biological assessments on finished water did not reveal any bioactivity, except for few treated water samples that exhibited estrogenic responses. Overall, the data emphasize the high quality of produced drinking water and the value of applying integrated chemical analysis and in vitro bioassays for water quality assessment.
Resumo:
Massive proliferations of cyanobacteria in freshwaters have recently increased, causing ecological and economic losses. Their ever-increasing presence in water sources destined to potabilization has become a major threat for public health, since several species can produce harmful toxins (cyanotoxin). Therefore, additional specific measures to improve management and treatment of drinking water(s) are required. The PhD thesis investigates toxic cyanobacteria in drinking waters with a special focus on Emilia-Romagna (Italy), throughout three separated chapters, each with different specific objectives. The first chapter aims at improving the fast monitoring of cyanobacteria in drinking water, which was investigated by testing different models of multi-wavelength spectrofluorometers. Inter-laboratories calibrations were conducted using mono-specific cultures and field samples, and both the feasibility and the technical limitations of such tools were illustrated. The second chapter evaluates the effectiveness of drinking water treatments in removing cyanobacterial cells and toxins. Two chlorinated oxidants (sodium hypochlorite and chlorine dioxide) already in use for pre-oxidation during water potabilization, were tested on cultures of the toxic cyanobacterium Microcystis aeruginosa posing a specific focus on toxin removal and revealing that pre-oxidation can cause the release of toxins and unknown metabolites. Innovative treatments based on non-thermal plasma were also tested, observing an effective and rapid inactivation of cyanobacterial cells. The third chapter presents a study on a cyanobacterium isolated from a drinking water reservoir of Emilia-Romagna and investigated by combining biological, chemical, and genomic methods. Although the strain did not produce any known cyanotoxin, high toxicity of water-extract was observed in bioassays and potential implications for drinking water were discussed. Overall, the PhD thesis offers new insights into toxic cyanobacteria management in drinking water, highlighting best practices for drinking water managers regarding their detection and removal. Additionally, the thesis provides new contributions to the understanding of the freshwater cyanobacteria community in the Emilia-Romagna region.