2 resultados para Stabilogram
Resumo:
We investigated postural control (PC) effects of a mountain ultra-marathon (MUM): a 330-km trail run with 24000 m of positive and negative change in elevation. PC was assessed prior to (PRE), during (MID) and after (POST) the MUM in experienced ultra-marathon runners (n = 18; finish time = 126+/-16 h) and in a control group (n = 8) with a similar level of sleep deprivation. Subjects were instructed to stand upright on a posturographic platform over a period of 51.2 seconds using a double-leg stance under two test conditions: eyes open (EO) and eyes closed (EC). Traditional measures of postural stability (center of pressure trajectory analysis) and stabilogram-diffusion analysis (SDA) parameters were analysed. For the SDA, a significantly greater short-term effective diffusion was found at POST compared with PRE in the medio-lateral (ML; Dxs) and antero-posterior (AP) directions (Dys) in runners (p<0.05) The critical time interval (Ctx) in the ML direction was significantly higher at MID (p<0.001) and POST (p<0.05) than at PRE in runners. At MID (p<0.001) and POST (p<0.05), there was a significant difference between the two groups. The critical displacement (Cdx) in the ML was significantly higher at MID and at POST (p<0.001) compared with PRE for runners. A significant difference in Cdx was observed between groups in EO at MID (p<0.05) and POST (p<0.005) in the ML direction and in EC at POST in the ML and AP directions (p<0.05). Our findings revealed significant effects of fatigue on PC in runners, including, a significant increase in Ctx (critical time in ML plan) in EO and EC conditions. Thus, runners take longer to stabilise their body at POST than at MID. It is likely that the mountainous characteristics of MUM (unstable ground, primarily uphill/downhill running, and altitude) increase this fatigue, leading to difficulty in maintaining balance.
Resumo:
[Purpose] The purpose of this study was to verify the effect on body sway during quiet standing of the habitual weight carried by students in a backpack. [Subjects] Forty-six students between the ages of 8 and 14 years volunteered. [Method] The percentage of body weight (% BW) of each student's backpack was calculated and the students were separated into three groups based on the results: Group A (0-7% BW), Group B (7.01-14% BW) and Group C (14.01-21%BW). [Results] The use of the backpack increased the area of the CoP sway, displacement and mean speed of the CoP data in the antero-posterior and medial-lateral directions in Group C. [Conclusion] Therefore, observed responses in the body posture changes caused by the weight of the backpack were similar to those reported in other studies conducted with different methodos of investigation.