925 resultados para Stability in organic solvents


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobilization of Burkholderia cepacia Lipase: Kinetic Resolution in Organic Solvents, Ionic Liquids and in Their Mixtures Biocatalysis opens the door to green and sustainable processes in synthetic chemistry allowing the preparation of single enantiomers, since the enzymes are chiral and accordingly able to catalyze chemical reactions under mild conditions. Immobilization of enzymes enhances process robustness, often stabilizes and activates the enzyme, and enables reuse of the same enzyme preparation in multiple cycles. Although hundreds of variations of immobilization methods exist, there is no universal method to yield the highly active, selective and stable enzyme catalysts. Therefore, new methods need to be developed to obtain suitable catalysts for different substrates and reaction environments. Lipases are the most widely used enzymes in synthetic organic chemistry. The literature part together with the experimental part of this thesis discusses of the effects of immobilization methods mostly used to enhance lipase activity, stability and enantioselectivity. Moreover, the use of lipases in the kinetic resolution of secondary alcohols in organic solvents and in ionic liquids is discussed. The experimental work consists of the studies of immobilization of Burkholderia cepacia lipase (lipase PS) using three different methods: encapsulation in sol-gels, cross-linked enzyme aggregates (CLEAs) and supported ionic liquids enzyme catalysts (SILEs). In addition, adsorption of lipase PS on celite was studied to compare the results obtained with sol-gels, CLEAs and SILEs. The effects of immobilization on enzyme activity, enantioselectivity and hydrolysis side reactions were studied in kinetic resolution of three secondary alcohols in organic solvents, in ionic liquids (ILs), and in their mixtures. Lipase PS sol-gels were shown to be active and stable catalysts in organic solvents and solvent:IL mixtures. CLEAs and SILEs were highly active and enantioselective in organic solvents. Sol-gels and SILEs were reusable in several cycles. Hydrolysis side reaction was suppressed in the presence of sol-gels and CLEAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report the obtention of a tetrabutylammonium hydroxide (TBAOH) solution in acetonitrile in a one pot process in order to study the interaction ironporphyrinOH- in non-aqueous systems. All the reactions were carried out under dry argon atmosphere to prevent the contamination of the solution with CO2, which leads to the formation of (TBA)2CO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following sequence of substitution reactions was studied spectrophotometrically in organic solvents: RNH2 + TCNQ →-HCN 7-substituted TCNQ →-HCN +RNH2 7.7-disubstituted TCNQ where R = butyl, octyl, dodecyl, and hexadecyl. The production of 7-(alkylamino)-7,7,8-tricyanoquinodimethanes proceeds via the formation of the anion radical of TCNQ (TCNQ-·) whose rate of appearance was found to be a function of the chain length of R, reaching a maximum for octylamine. The formation of TCNQ-· was sensitive to the solvent polarity and electron-donor power and was associated with a small enthalpy and a highly negative entropy of activation. Above a certain [C8H17NH2] the rate of disappearance of TCNQ-· was independent of the amine concentration, and the reaction had a much higher enthalpy and entropy of activation. The occurrence of tautomerism precluded an investigation of the conversion of 7-(octylamino)-7,8,8-tricyanoquinodimethane into 7,7-bis(octylamino)-8,8-dicyanoquinodimethane. A study of the reaction of octylamine with 7-morpholino-7,8,8-tricyanoquinodimethane (which does not exist in tautomeric forms) showed that the second substitution step proceeds with the same mechanism as the first one. The only difference between the two compounds (TCNQ and its monosubstituted morpholino derivative) is one of reactivity. © 1985 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strategy for a simple dispersion of commercial multi-walled carbon nanotubes (MWCNTs) using two organosilicones, polycarbosilane SMP10 and polysilazane Ceraset PSZ20, in organic solvents such as cyclohexane, tetrahydrofuran (THF), m-xylene and chloroform is presented. In just a few minutes the combined action of sonication and the presence of Pt(0) catalyst is sufficient to obtain a homogeneous suspension, thanks to the rapid hydrosilylation reaction between SiH groups of the polymer and the CNT sidewall. The as-produced suspensions have a particle size distribution <1μm and remain unchanged after several months. A maximum of 0.47 and 0.50mg/ml was achieved, respectively, for Ceraset in THF and SMP10 in chloroform. Possible applications as polymeric and ceramic thin films or aerogels are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research project was to identify the factors affecting the porcine pancreatic lipase (PPL.)-catalysed polytransesterification of a diester and a diol in organic solvents. It was hoped that by modifying reaction conditions a commercially acceptable polymer molecular weight (Mn) of 20,000 daltons might be attained. Exploratory investigations were carried out using 1,4-butanediolibis(2,2,2- trichloroethyl) adipate and glutarate systems in diethyl ether, with and without molecular sieves. It was found that molecular sieves promoted the reaction by reducing hydrolysis of the ester end-groups, resulting in polymer molecular weights between 1.2 and 2.2 times greater than those obtainable without molecular sieves. Investigations were then concentrated on the PPL-catalysed polytransesterification of 1,4-butanediol with divinyl adipate. The particular advantage of this system is that the reaction is irreversible. The effects of varying substrate concentration, mass of drying agent, reaction solvent, reaction temperature, mass of enzyme and also enzyme immobilisation on the 1,4-butanediolidivinyl adipate system were investigated. The highest molecular weight polymer obtained for the PPL-catalysed polytransesterification of 1,4-butanedial with divinyl adipate in diethyl ether was Mn -8,000. In higher boiling ether solvents molecular weights as high as Mn -9,200 were obtained for this system at elevated temperatures. It was found that the major factor limiting polymerisation was the low solubility of the polymer in the solvent which resulted in precipitation of the polymer onto the surface of the enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate salt effects on bundle formation of carbon nanotubes (CNTs) dispersed in an organic solvent, N-methyl-2-pyrrolidone (NMP). Addition of NaI salt leads to self-assembly of CNTs into well-recognizable bundles. It is possible to control the size of the CNT bundles by varying the salt concentration. © the Owner Societies 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From a physical-chemical point of view, it is challenging to form complexes with polyelectrolytes, consisting of only molecule of the largest component, i.e. the component with the highest number of charges. In this study, complexes are formed with DNA because of its potential applications as an artificial vector for gene delivery. The aim of this work is to prepare complexes in aqueous solutions as well as in organic solvents containing only one DNA molecule. For this purpose, the topology, equilibrium and conformation of complexes between a supercoiled DNA pUC19 (2686 base pairs) and spermine containing hydrophilic and/or hydrophobic moieties or a polylysine with a hydrophilic block are determined by means of dynamic (DLS) and static light scattering (SLS), atomic force microscopy (AFM), and circular dichroism (CD) spectroscopy. It is demonstrated that all of these complexes consisted of only one molecule of the polyanion. Only the polylysine-b-polyethylene glycol copolymer satisfied the conditions: 1) 100% neutralization of DNA charges and with a small excess of the cation (lower than 30%) and 2) form stable complexes at every charge ratio. rnDNA complex formation is also investigated in organic solvents. Precipitation is induced by neutralizing the charge of the supercoiled DNA pUC19 with the surfactants dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB). After isolation and drying of the solids, the complexes are dissolved in organic solvents. DNA-TTA complexes are only soluble in methanol and DNA-DTA in DMF. The complexes again consisted of only one DNA molecule. The final topology of the complexes is different in methanol than in DMF. In the former case, DNA seems to be compacted whereas in the latter case, the DNA-DTA complexes seem to have an expanded conformation. Upon complex formation with polycations in organic solvents (with polyvilylpyridine brush (b-PVP) in methanol and with a protected polylysine in DMF), DNA aggregates and precipitates. rnDNA is linearized with an enzyme (SmaI) to investigate the influence of the initial topology of the polyanion on the final conformation of the complexes in organic solvents. Two main differences are evidenced: 1. Complexes in organic solvents formed with linear DNA have in general a more expanded conformation and a higher tendency to aggregate. 2. If a polycation, i.e. the b-PVP, is added to the linear DNA-TTA complexes in methanol, complexes with the polycation are formed at a higher charge ratio. In DMF, the addition of the same b-PVP and of b-PLL did not lead to the formation of complexes.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study indicate the scope for the utilization of the marine fungus Aspergillus awamori Nagazawa BTMFW 032 for extracellular lipase production employing submerged fermentation. To the best of our knowledge this is the first report on lipase production by a marine fungus employing statistical modeling towards industrial production. The characterization of purified lipase produced by A. awamori showed stability in organic solvents, oxidizing agent and reducing agents, I,3-regiospecificity and hydrolytic activity. These properties make this lipase an ideal candidate for biocatalysis in organic media for the production of novel compounds such as biodiesel and sugar fatty esters. 91.4 % reduction in oil and grease content in ayurvedic oil by the treatment of A. awamori lipase indicates that there is a scope for this enzyme in the treatment of oil effluents and bioremediation. There is ample scope for further research on the biochemistry of the enzyme, structure elucidation and enzyme engineering towards a wide range of further applications, besides enriching scientific knowledge on marine enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives ((t)Butyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin-(t)Butyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin-(t)Butyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 x 10(-2) U mg protein(-1) at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (V'(max), K'(m), k'(cat) and k'(cat)/K'(m)) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis-Menten plot. Furthermore, the stability of the protein-calixarene complex was investigated for different initial pH values and half-life (t(1/2)) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin-calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the relationship between parental occupational exposure to organic solvents, and the risk of anencephaly in Mexico. Methods: A case-control study was conducted based on the registers of the Epidemiological Surveillance System for Neural Tube Defects in Mexico; 151 cases of anencephaly of ≥20 weeks’ gestation were included. A control, born alive and without any apparent congenital malformations at birth, was selected for each case in the same maternity service in which the case was born. Information on occupational exposures, lifestyle habits, reproductive history, use of medicines, supplementation with multivitamins and folic acid, was obtained by a general questionnaire; a food frequency questionnaire was also applied to obtain information of daily intake of folate and other B vitamins. Occupational exposure to organic solvents was based on job title as a proxy for exposure and analysed considering two critical periods around conception. Results: In logistic regression analysis, the odds of having a child with anencephaly was higher if the mother or the father was occupationally exposed to organic solvents during the periconceptional period, or when both parents or at least one of them were occupationally exposed during this period with an adjusted odds ratio of 2.97 (95% CI 1.36 to 6.52). Conclusions: The results support the hypothesis that both maternal and paternal occupational exposure to organic solvents can increase the probability of having a child with anencephaly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colloid chemical behavior of indole dihydropyrimidines in non-aqueous solvent mixture benzene-methanol of varying composition has been investigated by viscometric measurements at 303K± 0.1. The viscosity of the system increases with the increase in concentration. The Trend Change Point (TCP) values have been determined by intersection of two straight lines, which are found to be dependent on the composition of solvent mixtures. The study confirms that the nature of synthesized compounds agglomerate formed below and above 50% benzene concentration is quite different. The viscometric data have been analyzed in terms of Einstein, Vand, Moulik and Jones-Dole equations. These well known equations have been successfully applied to explain the results of viscosity measurements and the viscometric parameters show that the behavior of compound changes in the proximity of 50% benzene concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media.