998 resultados para Stability Margins
Resumo:
Using the nonlinear analog of the Fake Riccati equation developed for linear systems, we derive an inverse optimality result for several receding-horizon control schemes. This inverse optimality result unifies stability proofs and shows that receding-horizon control possesses the stability margins of optimal control laws. © 1997 Elsevier Science B.V.
Resumo:
A robust pole assignment by linear state feedback is achieved in state-space representation by selecting a feedback which minimises the conditioning of the assigned eigenvalues of the closed-loop system. It is shown here that when this conditioning is minimised, a lower bound on the stability margin in the frequency domain is maximised.
Resumo:
This paper deals with hybrid method for transient stability analysis combining time domain simulation and a direct method. Nowadays, the step-by-step simulation is the best available tool for allowing the uses of detailed models and for providing reliable results. The main limitation of this approach involves the large time of computational simulations and the absence of stability margin. On the other hand, direct methods, that demand less CPU time, did not show ample reliability and applicability yet. The best way seems to be using hybrid solutions, in which a direct method is incorporated in a time domain simulation tool. This work has studied a direct method using the transient potential and kinetic energy of the critical machine only. In this paper the critical machine is identified by a fast and efficient method, and the proposal is new for using to get stability margins from hybrid approaches. Results from systems, like 16-machine, show stability indices to dynamic security assessment. © 2001 IEEE.
Resumo:
The objective of this paper is to provide performance metrics for small-signal stability assessment of a given system architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC) derived from the behavior of an impedance-based sensitivity function. For each minor-loop gain defined at every system interface, a single number to state the robustness of stability is provided based on the computed maximum value of the corresponding sensitivity function. In order to compare various power-architecture solutions in terms of stability, a parameter providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system. It provides a meaningful metrics for system comparisons: the best system in terms of robust stability is the one that minimizes this index. In addition, the largest peak value within the system interfaces is given thus detecting the weakest point of the system in terms of robustness.
Resumo:
The optimization of power architectures is a complex problem due to the plethora of different ways to connect various system components. This issue has been addressed by developing a methodology to design and optimize power architectures in terms of the most fundamental system features: size, cost and efficiency. The process assumes various simplifications regarding the utilized DC/DC converter models in order to prevent the simulation time to become excessive and, therefore, stability is not considered. The objective of this paper is to present a simplified method to analyze small-signal stability of a system in order to integrate it into the optimization methodology. A black-box modeling approach, applicable to commercial converters with unknown topology and components, is based on frequency response measurements enabling the system small-signal stability assessment. The applicability of passivity-based stability criterion is assessed. The stability margins are stated utilizing a concept of maximum peak criteria derived from the behavior of the impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain.
Resumo:
The objective of this paper is to present a simplified method to analyze small-signal stability of a power system and provide performance metrics for stability assessment of a given power-system-architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC), derived from the behavior of an impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain. For each minor-loop gain, defined at every system interface, the robustness of the stability is provided as a maximum value of the corresponding sensitivity function. Typically power systems comprise of various interfaces and, therefore, in order to compare different architecture solutions in terms of stability, a single number providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system, combined with the worst case value of system interfaces.
Resumo:
El propósito de esta tesis es presentar una metodología para realizar análisis de la dinámica en pequeña señal y el comportamiento de sistemas de alimentación distribuidos de corriente continua (CC), formados por módulos comerciales. Para ello se hace uso de un método sencillo que indica los márgenes de estabilidad menos conservadores posibles mediante un solo número. Este índice es calculado en cada una de las interfaces que componen el sistema y puede usarse para obtener un índice global que indica la estabilidad del sistema global. De esta manera se posibilita la comparación de sistemas de alimentación distribuidos en términos de robustez. La interconexión de convertidores CC-CC entre ellos y con los filtros EMI necesarios puede originar interacciones no deseadas que dan lugar a la degradación del comportamiento de los convertidores, haciendo el sistema más propenso a inestabilidades. Esta diferencia en el comportamiento se debe a interacciones entre las impedancias de los diversos elementos del sistema. En la mayoría de los casos, los sistemas de alimentación distribuida están formados por módulos comerciales cuya estructura interna es desconocida. Por ello los análisis presentados en esta tesis se basan en medidas de la respuesta en frecuencia del convertidor que pueden realizarse desde los terminales de entrada y salida del mismo. Utilizando las medidas de las impedancias de entrada y salida de los elementos del sistema, se puede construir una función de sensibilidad que proporciona los márgenes de estabilidad de las diferentes interfaces. En esta tesis se utiliza el concepto del valor máximo de la función de sensibilidad (MPC por sus siglas en inglés) para indicar los márgenes de estabilidad como un único número. Una vez que la estabilidad de todas las interfaces del sistema se han evaluado individualmente, los índices obtenidos pueden combinarse para obtener un único número con el que comparar la estabilidad de diferentes sistemas. Igualmente se han analizado las posibles interacciones en la entrada y la salida de los convertidores CC-CC, obteniéndose expresiones analíticas con las que describir en detalle los acoplamientos generados en el sistema. Los estudios analíticos realizados se han validado experimentalmente a lo largo de la tesis. El análisis presentado en esta tesis se culmina con la obtención de un índice que condensa los márgenes de estabilidad menos conservativos. También se demuestra que la robustez del sistema está asegurada si las impedancias utilizadas en la función de sensibilidad se obtienen justamente en la entrada o la salida del subsistema que está siendo analizado. Por otra parte, la tesis presenta un conjunto de parámetros internos asimilados a impedancias, junto con sus expresiones analíticas, que permiten una explicación detallada de las interacciones en el sistema. Dichas expresiones analíticas pueden obtenerse bien mediante las funciones de transferencia analíticas si se conoce la estructura interna, o utilizando medidas en frecuencia o identificación de las mismas a través de la respuesta temporal del convertidor. De acuerdo a las metodologías presentadas en esta tesis se puede predecir la estabilidad y el comportamiento de sistemas compuestos básicamente por convertidores CC-CC y filtros, cuya estructura interna es desconocida. La predicción se basa en un índice que condensa la información de los márgenes de estabilidad y que permite la obtención de un indicador de la estabilidad global de todo el sistema, permitiendo la comparación de la estabilidad de diferentes arquitecturas de sistemas de alimentación distribuidos. ABSTRACT The purpose of this thesis is to present dynamic small-signal stability and performance analysis methodology for dc-distributed systems consisting of commercial power modules. Furthermore, the objective is to introduce simple method to state the least conservative margins for robust stability as a single number. In addition, an index characterizing the overall system stability is obtained, based on which different dc-distributed systems can be compared in terms of robustness. The interconnected systems are prone to impedance-based interactions which might lead to transient-performance degradation or even instability. These systems typically are constructed using commercial converters with unknown internal structure. Therefore, the analysis presented throughout this thesis is based on frequency responses measurable from the input and output terminals. The stability margins are stated utilizing a concept of maximum peak criteria, derived from the behavior of impedance-based sensitivity function that provides a single number to state robust stability. Using this concept, the stability information at every system interface is combined to a meaningful number to state the average robustness of the system. In addition, theoretical formulas are extracted to assess source and load side interactions in order to describe detailed couplings within the system. The presented theoretical analysis methodologies are experimentally validated throughout the thesis. In this thesis, according to the presented analysis, the least conservative stability margins are provided as a single number guaranteeing robustness. It is also shown that within the interconnected system the robust stability is ensured only if the impedance-based minor-loop gain is determined at the very input or output of each subsystem. Moreover, a complete set of impedance-type internal parameters as well as the formulas according to which the interaction sensitivity can be fully explained and analyzed, is provided. The given formulation can be utilized equally either based on measured frequency responses, time-domain identified internal parameters or extracted analytic transfer functions. Based on the analysis methodologies presented in this thesis, the stability and performance of interconnected systems consisting of converters with unknown internal structure, can be predicted. Moreover, the provided concept to assess the least conservative stability margins enables to obtain an index to state the overall robust stability of distributed power architecture and thus to compare different systems in terms of stability.
Resumo:
In the education of physical sciences, the role of the laboratory cannot be overemphasised. It is the laboratory exercises which enable the student to assimilate the theoretical basis, verify the same through bench-top experiments, and internalize the subject discipline to acquire mastery of the same. However the resources essential to put together such an environment is substantial. As a result, the students go through a curriculum which is wanting in this respect. This paper presents a low cost alternative to impart such an experience to the student aimed at the subject of switched mode power conversion. The resources are based on an open source circuit simulator (Sequel) developed at IIT Mumbai, and inexpensive construction kits developed at IISc Bangalore. The Sequel programme developed by IIT Mumbai, is a circuit simulation program under linux operating system distributed free of charge. The construction kits developed at IISc Bangalore, is fully documented for anyone to assemble these circuit which minimal equipment such as soldering iron, multimeter, power supply etc. This paper puts together a simple forward dc to dc converter as a vehicle to introduce the programming under sequel to evaluate the transient performance and small signal dynamic model of the same. Bench tests on the assembled construction kit may be done by the student for study of operation, transient performance and closed loop stability margins etc.
Resumo:
A high-speed path-following controller for long combination vehicles (LCVs) was designed and implemented on a test vehicle consisting of a rigid truck towing a dolly and a semitrailer. The vehicle was driven through a 3.5 m wide lane change maneuver at 80 km/h. The axles of the dolly and trailer were steered actively by electrically-controlled hydraulic actuators. Substantial performance benefits were recorded compared with the unsteered vehicle. For the best controller weightings, performance improvements relative to unsteered case were: lateral tracking error 75% reduction, rearward amplification (RA) of lateral acceleration 18% reduction, and RA of yaw rate 37% reduction. This represents a substantial improvement in stability margins. The system was found to work well in conjunction with the braking-based stability control system of the towing vehicle with no negative interaction effects being observed. In all cases, the stability control system and the steering system improved the yaw stability of the combination. © 2014 by ASME.
Resumo:
'Maximum Available Feedback' is Bode's term for the highest possible loop gain over a given bandwidth, with specified stability margins, in a single loop feedback system. His work using asymptotic analysis allowed Bode to develop a methodology for achieving this. However, the actual system performance differs from that specified, due to the use of asymptotic approximations, and the author[2] has described how, for instance, the actual phase margin is often much lower than required when the bandwidth is high, and proposed novel modifications to the asymptotes to address the issue. This paper gives some new analysis of such systems, showing that the method also contravenes Bode's definition of phase margin, and shows how the author's modifications can be used for different amounts of bandwidth.
Resumo:
Indices that report how much a contingency is stable or unstable in an electrical power system have been the object of several studies in the last decades. In some approaches, indices are obtained from time-domain simulation; others explore the calculation of the stability margin from the so-called direct methods, or even by neural networks.The goal is always to obtain a fast and reliable way of analysing large disturbance that might occur on the power systems. A fast classification in stable and unstable, as a function of transient stability is crucial for a dynamic security analysis. All good propositions as how to analyse contingencies must present some important features: classification of contingencies; precision and reliability; and efficiency computation. Indices obtained from time-domain simulations have been used to classify the contingencies as stable or unstable. These indices are based on the concepts of coherence, transient energy conversion between kinetic energy and potential energy, and three dot products of state variable. The classification of the contingencies using the indices individually is not reliable, since the performance of these indices varies with each simulated condition. However, collapsing these indices into a single one can improve the analysis significantly. In this paper, it is presented the results of an approach to filter the contingencies, by a simple classification of them into stable, unstable or marginal. This classification is performed from the composite indices obtained from step by step simulation with a time period of the clearing time plus 0.5 second. The contingencies originally classified as stable or unstable do not require this extra simulation. The methodology requires an initial effort to obtain the values of the intervals for classification, and the weights. This is performed once for each power system and can be used in different operating conditions and for different contingencies. No misplaced classification o- - ccurred in any of the tests, i.e., we detected no stable case classified as unstable or otherwise. The methodology is thus well fitted for it allows for a rapid conclusion about the stability of th system, for the majority of the contingencies (Stable or Unstable Cases). The tests, results and discussions are presented using two power systems: (1) the IEEE17 system, composed of 17 generators, 162 buses and 284 transmission lines; and (2) a South Brazilian system configuration, with 10 generators, 45 buses and 71 lines.
Resumo:
Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.
Resumo:
This paper addresses advanced control of a biological nutrient removal (BNR) activated sludge process. Based on a previously validated distributed parameter model of the BNR activated sludge process, we present robust multivariable controller designs for the process, involving loop shaping of plant model, robust stability and performance analyses. Results from three design case studies showed that a multivariable controller with stability margins of 0.163, 0.492 and 1.062 measured by the normalised coprime factor, multiplicative and additive uncertainties respectively give the best results for meeting performance robustness specifications. The controller robustly stabilises effluent nutrients in the presence of uncertainties with the behaviour of phosphorus accumulating organisms as well as to effectively attenuate major disturbances introduced as step changes. This study also shows that, performance of the multivariable robust controller is superior to multi-loops SISO PI controllers for regulating the BNR activated sludge process in terms of robust stability and performance and controlling the process using inlet feed flowrate is infeasible. (C) 2003 Elsevier Ltd. All rights reserved.