944 resultados para Sprinkler irrigation
Resumo:
Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding.
Both irrigation techniques resulted in similar grain yields (similar to 3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinlder systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work was to evaluate the effects of silicon application adjusted with nitrogen fertilization via top-dressing on grain productivity, the silicon contents of the soil, in the plant tissue and nitrogen contents in dry and irrigated conditions. The experimental outlining was from designed blocks with subdivided parcels and four repetitions. The treatments consisted of culture system (dry and irrigated) and the under parcels by the combination of silicon (0 and 100 kg ha(-1)), in magnesium and calcium silicate form (with 23% of SiO2), and four doses of N (urea) via top-dressing (0, 30, 60 and 90 kg ha(-1)). Silicon application at sowing furrow was a viable technique because it provided significant increase in the content of this element in the root growth of rice. The application of silicon in the sowing furrow did not change the content of the element nor the nitrogen nutrition in rice plants. The nitrogen application reduced the silicon content and increased nitrogen nutrition in rice plants. Silicon application at sowing furrow provided no increase in rice grain yield. When there was no water limitation to nitrogen fertilization enhanced linearly on rice grain yield, whereas under water stress the effect of nitrogen fertilization was limited.
Resumo:
The evapotranspiration (ETc) of sprinkler-irrigated rice was determined for the semiarid conditions of NE Spain during 2001, 2002 and 2003. The surface renewal method, after calibration against the eddy covariance method, was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Latent heat flux values were obtained by solving the energy balance equation. Finally, lysimeter measurements were used to validate the evapotranspiration values obtained with the surface renewal method. Seasonal rice evapotranspiration was about 750–800 mm. Average daily ETc for mid-season (from 90 to 130 days after sowing) was 5.1, 4.5 and 6.1 mm day−1 for 2001, 2002 and 2003, respectively. The experimental weekly crop coefficients fluctuated in the range of 0.83–1.20 for 2001, 0.81–1.03 for 2002 and 0.84–1.15 for 2003. The total growing season was about 150–160 days. In average, the crop coefficients for the initial (Kcini), mid-season (Kcmid) and late-season stages (Kcend) were 0.92, 1.06 and 1.03, respectively, the length of these stages being about 55, 45 and 25 days, respectively.
Resumo:
Mode of access: Internet.
Resumo:
O uso da irrigação na triticultura tem aumentado significativamente nos últimos anos no Brasil. Neste trabalho, objetivou-se avaliar a influência da irrigação na produtividade, na qualidade tecnológica da farinha e no sistema radicular do trigo. em experimento de campo no IAPAR, em Londrina, Paraná, a cultivar IPR 118 foi cultivada sob irrigação por aspersão convencional (Tratamento Irrigado) e sem irrigação (Tratamento Sequeiro). A produtividade foi determinada, colhendo-se três amostras de 25 m² por tratamento. Nestas mesmas amostras, procedeu-se à análise da qualidade tecnológica da farinha, sendo avaliada, entre outros parâmetros, a força de glúten (W). A avaliação do sistema radicular foi realizada após a colheita, no perfil de 0 a 45 cm de profundidade do solo, amostrando-se oito plantas em cada tratamento. O método da parede do perfil foi utilizado para determinar o número de raízes (NR) e o método do monólito para determinar a massa seca de raízes (MSR). A irrigação aumentou em três vezes a produtividade do trigo, porém diminuiu o W na farinha. Ainda assim, o valor de W encontrado no Tratamento Irrigado (249 10-4 J) foi suficiente para manter a classificação do trigo como tipo-pão, a mesma para o qual a cultivar IPR 118 é classificada. Os valores medidos de NR e a MSR foram iguais ou maiores no Tratamento Sequeiro.
Resumo:
In upland rice, the reduced grain yield that originates from the moisture stress period is related to the plant's tolerance of water deficiency and may vary between cultivars. The purpose of the work presented here was to evaluate the performance of upland rice cultivars in both rainfed and sprinkler-irrigated systems. A split-plot scheme with 8 replicates in a randomised block design was used. The plots were composed of 2 cropping systems (rainfed and sprinkler-irrigated) and the split-plot consisted of 2 cultivars (IAC 201 and Carajas) which are suggested for cultivation in upland ecosystems. Carajas had a greater number of panicles per square metre, higher spikelet fertility and grain mass, and, consequently, a higher grain yield than IAC 201 regardless of cropping system. IAC 201 was more sensitive to water deficiency than Carajas. Sprinkler irrigation improved spikelet fertility, grain mass and upland rice grain yield. Even when cultivars with a higher tolerance of water deficiency are used, a sprinkler-irrigated system may be a viable method to increase upland rice yield throughout most of the Brazilian Cerrado.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate dry matter yield and nutritional value of palisade grass (Brachiaria brizantha cv. Marandu) using nitrogen doses and sprinkler irrigation in two periods of the year, aiming at reducing seasonality of forage production. It was used a randomized block design in a split-plot scheme, with five doses of nitrogen (0, 50, 100, 150, and 200 kg/ha/cut), and the sub-plots were defined by the seasons of the year (wet and dry season), with and without irrigation. During the wet season, in the plots with and without irrigation, doses of 175 and 161 kg/ha/cut promoted the highest dry matter yields. During the dry season, 171 kg ha -1N with irrigation resulted in the highest dry matter yield. During the same season, there was no response to N fertilization in the lack of irrigation. Average contents of CP were 10% with and without irrigation. Contents of neutral detergent fiber decreased with nitrogen doses, while acid detergent fiber was not affected by fertilization. Plots under irrigation reached the maximal acid detergent fiber content at N dose of 60 kg ha -1. Irrigation promotes increase of 15% increase in dry matter yield and it increases contents of neutral detergent fiber. © 2010 Sociedade Brasileira de Zootecnia.
Resumo:
The evolution of water content on a sandy soil during the sprinkler irrigation campaign, in the summer of 2010, of a field of sugar beet crop located at Valladolid (Spain) is assessed by a capacitive FDR (Frequency Domain Reflectometry) EnviroScan. This field is one of the experimental sites of the Spanish research center for the sugar beet development (AIMCRA). The objective of the work focus on monitoring the soil water content evolution of consecutive irrigations during the second two weeks of July (from the 12th to the 28th). These measurements will be used to simulate water movement by means of Hydrus-2D. The water probe logged water content readings (m3/m3) at 10, 20, 40 and 60 cm depth every 30 minutes. The probe was placed between two rows in one of the typical 12 x 15 m sprinkler irrigation framework. Furthermore, a texture analysis at the soil profile was also conducted. The irrigation frequency in this farm was set by the own personal farmer 0 s criteria that aiming to minimizing electricity pumping costs, used to irrigate at night and during the weekend i.e. longer irrigation frequency than expected. However, the high evapotranspiration rates and the weekly sugar beet water consumption—up to 50mm/week—clearly determined the need for lower this frequency. Moreover, farmer used to irrigate for six or five hours whilst results from the EnviroScan probe showed the soil profile reaching saturation point after the first three hours. It must be noted that AIMCRA provides to his members with a SMS service regarding weekly sugar beet water requirement; from the use of different meteorological stations and evapotranspiration pans, farmers have an idea of the weekly irrigation needs. Nevertheless, it is the farmer 0 s decision to decide how to irrigate. Thus, in order to minimize water stress and pumping costs, a suitable irrigation time and irrigation frequency was modeled with Hydrus-2D. Results for the period above mentioned showed values of water content ranging from 35 and 30 (m3/m3) for the first 10 and 20cm profile depth (two hours after irrigation) to the minimum 14 and 13 (m3/m3) ( two hours before irrigation). For the 40 and 60 cm profile depth, water content moves steadily across the dates: The greater the root activity the greater the water content variation. According to the results in the EnviroScan probe and the modeling in Hydrus-2D, shorter frequencies and irrigation times are suggested.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
为提高喷灌水量分布均匀性评价的准确性,当雨量筒径向布置时,为考虑所有测点数据对插值点降水深的影响,采用径向和周向两次的三次样条插值计算出未知点的降水深,从而计算喷灌均匀系数。以美国雨鸟30PSH型喷头雨量筒间隔为1m和2m的喷洒试验数据,计算网格点取1m和0.25m,分别采用三次样条两次插值法和邻近四点距离线性插值法计算了克里斯琴森均匀系数。结果表明,均匀系数由高至低的顺序依次为采样间隔为2m的线性插值、采样间隔为2m的三次样条两次插值、采样间隔为1m的线性插值和采样间隔为1m的三次样条两次插值。采样间隔2m比1m计算出的均匀系数总体高3~4个百分点,三次样条两次插值法比邻近点距离线性插值法略低1个百分点,2种计算网格点间距下的均匀系数差值小于1个百分点。结果证明,采样间距、插值方法、计算网格间距对均匀系数的影响依次降低,三次样条两次插值法可以用来评价喷灌组合均匀系数。
Resumo:
为突出局部灌溉不足或灌溉过量对均匀性的影响程度,提出了基于几何平均数分布均匀系数的概念,将其定义为部分测点水深几何平均值与所有测点算术平均值的比值。并根据部分测点水深数据的提取方法不同,分为1/4低值、1/4高值、1/2低值和1/2高值分布均匀系数。用MATLAB和VC~++语言编制了可以实现上述分布均匀系数计算的软件"SIUEW1.0"。结果初步证明:基于几何平均数的乘法模型要比基于算术平均数的加法模型更加突出了部分低(或高)于平均值的测点水深数据对均匀系数的影响程度,因此更适用于时局部灌溉不足或过量灌溉有严格控制要求地块的灌溉均匀性评价;无论高值和低值,取点数越少,均匀性的评价结果越差。
Resumo:
通过喷灌玉米田间试验,研究了喷灌水经玉米冠层再分配后的分布状况。结果表明:在玉米全生育期,茎秆下流水量占灌水量的均值为44%左右,棵间穿透水量占灌水量的均值为48%左右,冠层截留量在0.8 ̄2.9mm之间变化。一次灌水中,喷灌水在地表的分布很不均匀,43.2%的灌水量经茎秆下流到根区,在距离茎秆7cm,15cm,25cm和32.5cm处,地表接收的水量占总灌水量的比例分别为18.9%、43.5%、66.9%和84.5%。灌水量、种植密度、株高和叶面积指数等都影响着喷灌水在地表的分布。