941 resultados para Spraying equipment
Resumo:
A ferrugem asiática da soja, causada pelo fungo Phakopsora pachyrhizi, é considerada a principal doença da soja, e, portanto, a escolha e o uso adequado dos equipamentos de pulverização são essenciais para seu controle. O objetivo deste trabalho foi avaliar o desempenho de diferentes equipamentos de pulverização aérea para o controle curativo da ferrugem da soja, utilizando o fungicida Impact 125 SC (flutriafol) a 0,5 L p c ha-1. Os seguintes tratamentos foram avaliados: atomizador Micronair AU 5000 (10 L ha-1 com óleo e 20 L ha-1 sem óleo na calda); atomizador Stol ARD (10 e 20 L ha-1 ambos com óleo) e o sistema eletrostático Spectrum (10 L ha-1 sem óleo a 64 e 71% de umidade relativa). Utilizou-se óleo de algodão (1,0 L ha-1) acrescido de emulsificante BR 455 a 0,025 L ha-1. O ensaio foi realizado na terceira aplicação de fungicidas, quando foram analisadas quatro repetições nas áreas aplicadas e quatro testemunhas não aplicadas para cada tratamento, avaliando-se a severidade da ferrugem, os depósitos de flutriafol nas folhas de soja e o percentual de redução de ferrugem. A análise dos depósitos nas folhas mostrou que não houve diferenças significativas entre os tratamentos. Os melhores controles da ferrugem foram obtidos com os tratamentos Micronair (10 L ha-1 com óleo), Stol (20 L ha-1 com óleo) e o sistema elestrostático (10 L ha-1) com a menor umidade relativa do ar (64 %).
Resumo:
The production of sound, clean fruit is unquestionably one of the major problems facing the modern fruit grower. Culture may be neglected and pruning delayed for a time but the omission of sprays for even a single season demonstrates their absolute necessity. This applies equally to the commercial grower and to the farmer or gardener who has only a few trees. Spray materials, equipment, management, schedules, insect pests and orchard diseases are discussed in this 1928 extension circular.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
After a brief review of the various forms of thermal spraying equipment and processes, descriptions of the basic principles involved and the general functions for which thermally sprayed coatings are used are given. The background of the collaborating company, Metallisation, is described and their position in the overall market discussed, providing a backdrop against which the appropriateness of various project options might be judged. Current arc-spraying equipment is then examined, firstly in terms of the workings of their constituent parts and subsequently by examining the effects of changes in design and in operating parameters both upon equipment operation and the coatings produced. Published literature relating to these matters is reviewed. Literature relating to the production, comminution and propulsion of the particles which form the spray is discussed as are the mechanisms involved at impact with the substrate. Literature on the use of rockets for thermal spraying and induction heating as a process for feedstock melting are also reviewed. Three distinct options for further study are derived and preliminary tests and costings made to allow one option alone, the use of rocket acceleration, to go forward to the experimental phase. A suitable rocket burner was developed, tested and incorporated into an arc-spray system so that the sprayability of the whole could be assessed. Coatings were made using various parameters and these are compared with coatings produced by a standard system. Coatings were examined for macro and micro hardness, cohesive strength, porosity and by microstructural examination. The results indicate a high degree of similarity between the coatings produced by the standard system and the high velocity system. This was surprising in view of the very different atomising media and velocities. Possible causes for this similarity and the general behaviour of this new system and the standard system are discussed before the study reaches its conclusions in not proving the hypothesis that an increase in particle velocity would improve the mechanical properties of arc-sprayed steel coatings. KEY WORDS: Sprayed metal coatings, Electric arc spraying, High velocity flame spraying, Sprayed coating properties
Resumo:
Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5
Resumo:
Os objetivos deste trabalho foram quantificar as exposições dérmicas (EDs) e respiratórias (ERs) proporcionadas ao piloto e ao seu ajudante nas aplicações de herbicidas para o controle de plantas daninhas aquáticas com aerobarco; classificar essas condições de trabalho em seguras ou inseguras; e calcular a necessidade de controle das exposições (NCE) e o tempo de trabalho seguro (TTS). O aerobarco utilizado tinha casco de alumínio (4,85 x 2,42 m) e acionamento por hélice acoplada a motor a gasolina de 350 HP. O equipamento de pulverização era composto por bomba de diafragma com fluxo máximo de 49,69 L min-1, pressão máxima de 25 kg cm-2, acionada por motor a gasolina de 4 HP, e tanque de calda de 189 L. A barra de pulverização de alumínio era composta de duas seções laterais de 3 m, posicionadas na linha entre o encosto do banco do piloto e o início da estrutura protetora da hélice. Cada seção da barra tinha seis bicos com pontas de jato plano com indução de ar AI 100 03, espaçados de 0,5 m, e uma ponta OC 20 fixada em cada extremidade. O conjunto de pontas pulverizava faixas de 6 m de largura e aplicava o volume de calda de 200 L ha-1. O sistema tinha gerenciador de fluxo, controlado por central eletrônica acoplada a DGPS (com precisão submétrica), para corrigir automaticamente a vazão em função de alterações na velocidade real da embarcação. As EDs e ERs aos herbicidas foram calculadas com os dados substitutos das exposições às caldas, avaliadas com os traçadores cobre e manganês adicionados às caldas. As exposições foram extrapoladas para uma jornada de trabalho de seis horas. A segurança das condições de trabalho foi determinada com o cálculo da margem de segurança (MS), utilizando-se a fórmula MS = (NOEL x 70)/(QAE x 10), em que QAE = quantidade absorvível da exposição. As condições de trabalho foram classificadas em seguras, se MS>1, ou inseguras, se MS<1. As exposições proporcionadas pelas condições de trabalho foram de 10,65 mL de calda por dia para o piloto e de 16,80 mL por dia para o ajudante, que fica sentado em uma cadeira a 2,0 m à frente do piloto e da barra de pulverização. Classificaram-se como seguras as aplicações dos herbicidas glyphosate (Rodeo, 6 L ha-1), 2,4D (DMA 806 BR, 8 L ha-1) e fluridone (Sonar AQ, 0,4 L ha-1), para o piloto e o seu ajudante. Classificou-se como insegura a aplicação do herbicida diquat (Reward, 4,0 L ha-1) para as duas condições de trabalho, cujas necessidades de controle das exposições calculadas foram de 65% para o piloto e de 78% para o ajudante do piloto.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
"December 1970."
Resumo:
Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5
Resumo:
Mode of access: Internet.