959 resultados para Spray-dry
Resumo:
La campylobactériose est une zoonose causée par Campylobacter jejuni, une bactérie commensale du poulet, considérée comme la principale source de contamination humaine. C. jejuni est rarement retrouvé dans le tube digestif des poulets avant deux ou trois semaines d'âge. Ce qui pourrait s'expliquer par la transmission d'une immunité maternelle (anticorps IgY) transmise aux poussins via le jaune d'œuf. À la Chaire de recherche en Salubrité des Viandes (CRSV), la caractérisation d'anticorps IgY extraits de jaunes d'œufs frais a montré des niveaux de production d’anticorps différents selon le mode d’immunisation et suggère, in vitro, des effets sur ce pathogène. Ce qui laisse penser qu'en tant qu'additif alimentaire, une poudre de jaunes d'œuf potentialisée permettrait de lutter contre C. jejuni chez le poulet à griller. Dans ce travail, le processus de fabrication de l'additif (déshydratation par « Spray dry » puis encapsulation) a été évalué et les différents modes d'immunisation des poules pondeuses ont également été comparés. Les anticorps ont été extraits des différentes poudres de jaunes d'œuf ou du produit final encapsulé, et caractérisés in vitro (dosage / ELISA, test de mobilité, bactéricidie, western blot). Puis, une évaluation in vivo de la capacité de ces poudres encapsulées, incorporée à 5 % dans la moulée, afin de réduire ou de bloquer la colonisation intestinale des oiseaux par C. jejuni a été testée. In vitro, les résultats ont montré des concentrations d'anticorps et d'efficacité variables selon le type de vaccination. Dans cette étude, on a observé que le « Spray dry » a concentré les anticorps dans les poudres et que ces anticorps sont restés fonctionnels contre C. jejuni. On a également observé que l'encapsulation n’entraîne pas une perte quantitative des anticorps contenus dans les poudres. Malgré les résultats in vitro encourageants, les résultats in vivo ne révèlent aucune inhibition ou réduction de la colonisation des oiseaux par C. jejuni. L’absence d’efficacité la poudre de jaunes d’œuf encapsulée dans notre étude n’est pas due à une perte quantitative et/ou qualitative des anticorps comme soutenu dans les expériences in vitro. Ce qui démontre que les recherches doivent être poursuivies afin de déterminer les conditions optimales de l'utilisation de la poudre de jaune d'œuf in vivo, en tant qu'additif alimentaire chez les poulets
Resumo:
This study investigated the protective effect of spray-dried açaí powder (AP) intake on colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) in male Wistar rats. After 4. weeks of DMH administrations, the groups were fed with standard diet, a diet containing 2.5% or 5.0% AP or a diet containing 0.2% N-acetylcysteine (NAC) for 10. weeks, using aberrant crypt foci (ACF) as the endpoint. Additionally, two groups were fed with standard diet or a diet containing 5.0% AP for 20. weeks, using colon tumors as the endpoint. In ACF assay, a reduction in the number of aberrant crypts (ACs) and ACF (1-3 AC) were observed in the groups fed with 5.0% AP (37% AC and 47% ACF inhibition, p=. 0.036) and 0.2% NAC (39% AC and 41% ACF inhibition, p=. 0.042). In tumor assay, a reduction in the number of invasive tumors (p<. 0.005) and tumor multiplicity (p=. 0.001) was observed in the group fed with 5.0% AP. Also, a reduction in tumor Ki-67 cell proliferation (p=. 0.003) and net growth index (p=. 0.001) was observed in the group fed with 5.0% AP. Therefore the findings of this study indicate that AP feeding may reduce the development of chemically-induced rat colon carcinogenesis. © 2013 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper combines experimental data with simple mathematical models to investigate the influence of spray formulation type and leaf character (wettability) on shatter, bounce and adhesion of droplets impacting with cotton, rice and wheat leaves. Impaction criteria that allow for different angles of the leaf surface and the droplet impact trajectory are presented; their predictions are based on whether combinations of droplet size and velocity lie above or below bounce and shatter boundaries. In the experimental component, real leaves are used, with all their inherent natural variability. Further, commercial agricultural spray nozzles are employed, resulting in a range of droplet characteristics. Given this natural variability, there is broad agreement between the data and predictions. As predicted, the shatter of droplets was found to increase as droplet size and velocity increased, and the surface became harder to wet. Bouncing of droplets occurred most frequently on hard to wet surfaces with high surface tension mixtures. On the other hand, a number of small droplets with low impact velocity were observed to bounce when predicted to lie well within the adhering regime. We believe this discrepancy between the predictions and experimental data could be due to air layer effects that were not taken into account in the current bounce equations. Other discrepancies between experiment and theory are thought to be due to the current assumption of a dry impact surface, whereas, in practice, the leaf surfaces became increasingly covered with fluid throughout the spray test runs.
Infant milk formula manufacture: process and compositional interactions in high dry matter wet-mixes
Resumo:
Infant milk formula (IMF) is fortified milk with composition based on the nutrient content in human mother's milk, 0 to 6 months postpartum. Extensive medical and clinical research has led to advances in the nutritional quality of infant formula; however, relatively few studies have focused on interactions between nutrients and the manufacturing process. The objective of this research was to investigate the impact of composition and processing parameters on physical behaviour of high dry matter (DM) IMF systems with a view to designing more sustainable manufacturing processes. The study showed that commercial IMF, with similar compositions, manufactured by different processes, had markedly different physical properties in dehydrated or reconstituted state. Commercial products made with hydrolysed protein were more heat stable compared to products made with intact protein, however, emulsion quality was compromised. Heat-induced denaturation of whey proteins resulted in increased viscosity of wet-mixes, an effect that was dependant on both whey concentration and interactions with lactose and caseins. Expanding on fundamental laboratory studies, a novel high velocity steam injection process was developed whereby high DM (60%) wet-mixes with lower denaturation/viscosity compared to conventional processes could be achieved; powders produced using this process were of similar quality to those manufactured conventionally. Hydrolysed proteins were also shown to be an effective way of reducing viscosity in heat-treated high DM wet-mixes. In particular, using a whey protein concentrate whereby β-Lactoglobulin was selectively hydrolysed, i.e., α-Lactalbumin remained intact, reduced viscosity of wet-mixes during processing while still providing good emulsification. The thesis provides new insights into interactions between nutrients and/or processing which influence physical stability of IMF both in concentrated liquid and powdered form. The outcomes of the work have applications in such areas as; increasing the DM content of spray drier feeds in order to save energy, and, controlling final powder quality.
Resumo:
This work describes the development of spray dried polymer coated liposomes composed of soy phosphatidylcholine (SPC) and phospholipid dimyristoyl phosphatidylglycerol (DMPG) coated with alginate, chitosan or trimethyl chitosan (TMC), that are able to penetrate through the nasal mucosa and offer enhanced penetration over uncoated liposomes when delivered as a dry powder. All the liposome formulations, loaded with BSA as model antigen, were spray-dried to obtain powder size and liposome size in a suitable range for nasal delivery. Although coating resulted in some reduction in encapsulation efficiency, levels were still maintained between 60% and 69% and the structural integrity of the entrapped protein and its release characteristics were maintained. Coating with TMC gave the best product characteristics in terms of entrapment efficiency, glass transition (Tg) and mucoadhesive strength, while penetration of nasal mucosal tissue was very encouraging when these liposomes were administered as dispersions although improved results were observed for the dry powders
Resumo:
A.C.P. Rodrigues-Costa, D. Martins, N.V. Costa, and M.R.R. Pereira. 2011. Spray deposition on weeds of common bean crops. Cien. Inv. Agr. 38(3): 357-365. Weed control failure in common bean (Phaseolus vulgaris L.) production may be related to inappropriate herbicide application techniques. The purpose of this study, therefore, was to evaluate the amount of spray solution deposition that occurred on the weeds, Bidens pilosa L. and Brachiaria plantaginea (Link) Hitch., both within and between rows of common beans. The research was arranged in a randomized block design with four replications. The following 6 spray nozzles were used: flat fan nozzles XR 110015 VS (150 L ha(-1)) and XR 11002 VS (200 L ha(-1)); cone nozzles TX VK 6 (150 L ha(-1)) and TX VK 8 (200 L ha(-1)); and twin flat fan nozzles TJ60 11002 VS (150 L ha(-1)) and TJ60 11002 VS (200 L ha-1). The results showed that the loss of the spray solution on the soil occurred mainly within the bean rows and with a high intensity when using a nozzle spraying 200 L ha(-1). At 30 days after sowing, the TX (150 L ha(-1)) nozzle was the only nozzle that promoted deposits of less than 210.0 mu L g(-1) of dry mass. The spray nozzles showed a good performance in the deposition of the spray solution on the weeds that occurred both within and between the rows. However, for both species there was great variation in individual deposits depending on their location in relationship to the plants.
Resumo:
The effect of application with different nozzle types and volume rates on spray deposition in the V3 stage of two soybean cultivars was evaluated. The experiments were conducted in the Facultad de Ciencias Agronomicas of the UNESP-Botucatu/SP. The nozzles evaluated were an air induced flat fan nozzle (Al 11015 at 150 L ha(-1), Al 11002 at 200 and 250 L ha(-1)), a twin flat fan nozzle (TJ 60 11002 at 150, 200 and 250 L ha(-1)), and a cone nozzle (TX 6 at 150 L ha(-1), TX 8 at 150 L ha(-1) and TX 10 at 250 L ha(-1)). To evaluate spray deposition on the plants, a tracer (Brilliant Blue FD&C-1) was added. The experimental design was random blocks with four replications. Deposition on plants was determined by absorbancy reading in 630 nm wavelength. The data were adjusted to a calibration curve and transformed into deposited spray volume in mL. The relationship deposition per unit of dry matter was adjusted to a regression curve (Gompertz model). In cultivar CD 208, the highest deposit was for the larger volumes and for the treatment TX 8 200 L ha(-1). The most uniform treatments were all the nozzles with the volume 150 L ha(-1) and the TJ60 nozzle for 200 1, ha(-1). In cultivar CD 216, the greatest spray depositions were achieved with the treatments Al at 200 and 250 L ha(-1) and TJ 60 at 250 L ha(-1), and the most uniform treatments were the TX 6 and TJ60 nozzles for the volume150 L ha(-1).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cultivation of fruit plants from temperate climate in tropical or subtropical regions can be a good income alternative for the producer. However, due to the little existent information about cultivation of those fruit plants, the producers use imported techniques of other producing areas, or even an association of practices used for other fruit plants, pointing out the leaf spray fertilization of micronutrients without appropriate scientific base. In this context, the objective of this study was to verify the effect of the leaf spray fertilization of B and Zn on productivity and fruit quality of Japanese pear tree. The experiment was conducted from 2004 to 2005, in Ilha Solteira, in northwestern São Paulo State-Brazil. The climate is, according to the Köpppen Classification, tropical wet and dry (Aw). The 'Okusankichi' cultivar, grafted on Pyrus communis L. rootstock was used as well as doses of 110 g.ha-1 of B and 250 g.ha-1 of Zn in each application. The treatments were: T1. water, T2. boric acid, T3. zinc sulfate, T4. T2 + T3, T5. boric acid + urea + citric acid + EDTA, T6. zinc sulfate + urea + citric acid + EDTA, T7. T5 + T6, T8. boric acid + urea + citric acid + EDTA + sodium molibdate + sulfur + calcium chloride, T9. zinc sulfate + urea + citric acid + EDTA + Fe sulfate + Mn sulfate + Mg sulfate and, T10. T8+T9. A randomized blocks design was used and the averages were compared by Tukey test. In the first crop the mixture of boric acid with quelating agents were efficient to supply B to the plants and zinc sulfate plus quelating agents were efficient to increase Zn leaf content. However, the productivity and the fruit quality were not influenced by the leaf spray of B and Zn. In the second crop the leaf content of B and Zn and the productivity were not influenced by the leaf spray; the boric acid and the zinc sulfate with or without quelating agents increased the contents of total soluble solids and, the boric acid with or without quelating agents increased the contents of total titratable acidity.
Resumo:
The high demand of pesticides in the production systems makes the application technology one of the main alternatives to optimize the products efficiency. In this context, the study aimed to evaluate the effects of spray nozzles and spray volumes on spraying deposits, armyworm control and crop corn performance in narrow row sowing system. The experiment was carried out at experimental area of Sao Paulo State University, Campus of Botucatu/SP, Brazil, during the 2009/2010 agricultural season, in randomized blocks with factorial scheme (2x2+1) and four replications. It was tested two flat fan spray nozzles (with and without air induction) combined with two spray volumes (100 and 200 L ha-1) plus a control treatment. There was no influence of spray nozzles (without air induction) in the spray deposits levels on plants. However, the flat fan nozzle with air induction was more effective on fall armyworm, with 100% of control against 47.84% from other at 15 days after spraying. The increase in the spray volume promoted high spray deposits (415.4 and 388.6 μL g-1 dry mass for flat fan nozzle with and without air induction, respectively at V10 growth stage) and consequently, the highest spray volume (200 L-1) was more efficient in the fall armyworm suppression, with 100% of control. All the technologies tested showed lower plant injury from fall armyworm. The insecticide sprayed with different technologies did not affect the parameters of plant height and leaf area index. The corn productivity was directly related with control efficiency of fall armyworm. © 2012 Academic Journals Inc.
Resumo:
The effects of drying air inlet temperature (IT) and concentration of Aerosil 200 (C-A) on several properties of spray-dried Apeiba tibourbou extracts were investigated following a 3(2) full factorial design. Powder recovery varied from 9.83 to 46.95% and dried products showed moisture contents below 7%. Although the spray-dried products lost some of their polyphenols, they still present excellent antioxidant activity, opening perspectives for its use to medicinal purpose. C-A exerted a key role on the properties of spray-dried extracts, while IT did not present a significative influence. Aerosil (R) 200 proved to be an interesting alternative as an excipient for the drying of the herbal extract, even at intermediate concentrations such as 15%. The best combination of conditions to use for obtaining dry A. tibourbou extracts with adequate physicochemical and functional properties involves an IT of 100 degrees C and a C-A of 15%.
Resumo:
The ability to induce apoptosis is an important marker for cytotoxic antitumor agents. Some natural compounds have been shown to modulate apoptosis pathways that are frequently blocked in human cancers, and therefore, these compounds provide novel opportunities for cancer drug development. Phyllanthus, a plant genus of the family Euphorbiaceae, exhibits multiple pharmacological actions. Of these, Phyllanthus niruri extracts exhibit significant antitumor activity, which is consistent with the traditional medicinal use of this plant. To examine the apoptotic effects of a spray-dried extract of P. niruri (SDEPN), human hepatocellular carcinoma cells (HepG2, Huh-7), colorectal carcinoma cells (Ht29) and keratinocytes (HaCaT) were exposed to the extract for 4, 8 and 24 h. Flow cytometry and caspase-3 immunostaining were used to detect apoptosis, while analysis of variance was applied to identify significant differences between groups (P < 0.05). At all timepoints, the SDEPN induced significantly different cytotoxic effects for HepG2 and Huh-7 cells compared with control cells (P < 0.001). In contrast, the SDEPN had a protective effect on HaCaT cells compared with control cells at all timepoints (P < 0.001). In caspase-3 assays, activation was detected after cell death was induced in Huh-7 and HepG2 cancer cells by the SDEPN. In combination, these results indicate that the SDEPN is selectively toxic towards cancer cell lines, yet is protective towards normal cells.
Resumo:
Dry limited amplitude vibrations flow-transition induced vibrations were experienced on a helically-filleted tube, in a previous study performed by Kleissl and Georgakis (2012). These vibrations have never been reported in previous studies. A deep study on the same inclined-yawed cable configuration has been performed, in order to investigate and further understand the nature of these vibrations. The investigation has been carried out through passive-dynamic wind tunnel tests in the Climatic Wind Tunnel at FORCE Technology, Kgs. Lyngby, Denmark. The results are carried out in terms of aerodynamic damping and peak to peak amplitude at different flow velocities and different boundary conditions. The latter are done by testing the model with and without the spray system installed in the wind tunnel cross section, in order to understand and evaluate the influence of the spray system on the start of the vibrations mechanism and on the flow turbulence. The gained experiences are finally presented for the use in future testing activities with the purpose of improving the performance of passive-dynamic tests.