174 resultados para Sprawl
Resumo:
Urban sprawl is the outgrowth along the periphery of cities and along highways. Although an accurate definition of urban sprawl may be debated, a consensus is that urban sprawl is characterized by an unplanned and uneven pattern of growth, driven by multitude of processes and leading to inefficient resource utilization. Urbanization in India has never been as rapid as it is in recent times. As one of the fastest growing economies in the world, India faces stiff challenges in managing the urban sprawl, while ensuring effective delivery of basic services in urban areas. The urban areas contribute significantly to the national economy (more than 50% of GDP), while facing critical challenges in accessing basic services and necessary infrastructure, both social and economic. The overall rise in the population of the urban poor or the increase in travel times due to congestion along road networks are indicators of the effectiveness of planning and governance in assessing and catering for this demand. Agencies of governance at all levels: local bodies, state government and federal government, are facing the brunt of this rapid urban growth. It is imperative for planning and governance to facilitate, augment and service the requisite infrastructure over time systematically. Provision of infrastructure and assurance of the delivery of basic services cannot happen overnight and hence planning has to facilitate forecasting and service provision with appropriate financial mechanisms.
Resumo:
Urbanisation is the increase in the population of cities in proportion to the region's rural population. Urbanisation in India is very rapid with urban population growing at around 2.3 percent per annum. Urban sprawl refers to the dispersed development along highways or surrounding the city and in rural countryside with implications such as loss of agricultural land, open space and ecologically sensitive habitats. Sprawl is thus a pattern and pace of land use in which the rate of land consumed for urban purposes exceeds the rate of population growth resulting in an inefficient and consumptive use of land and its associated resources. This unprecedented urbanisation trend due to burgeoning population has posed serious challenges to the decision makers in the city planning and management process involving plethora of issues like infrastructure development, traffic congestion, and basic amenities (electricity, water, and sanitation), etc. In this context, to aid the decision makers in following the holistic approaches in the city and urban planning, the pattern, analysis, visualization of urban growth and its impact on natural resources has gained importance. This communication, analyses the urbanisation pattern and trends using temporal remote sensing data based on supervised learning using maximum likelihood estimation of multivariate normal density parameters and Bayesian classification approach. The technique is implemented for Greater Bangalore – one of the fastest growing city in the World, with Landsat data of 1973, 1992 and 2000, IRS LISS-3 data of 1999, 2006 and MODIS data of 2002 and 2007. The study shows that there has been a growth of 466% in urban areas of Greater Bangalore across 35 years (1973 to 2007). The study unravels the pattern of growth in Greater Bangalore and its implication on local climate and also on the natural resources, necessitating appropriate strategies for the sustainable management.
Resumo:
Urban population is growing at around 2.3 percent per annum in India. This is leading to urbanisation and often fuelling the dispersed development in the outskirts of urban and village centres with impacts such as loss of agricultural land, open space, and ecologically sensitive habitats. This type of upsurge is very much prevalent and persistent in most places, often inferred as sprawl. The direct implication of such urban sprawl is the change in land use and land cover of the region and lack of basic amenities, since planners are unable to visualise this type of growth patterns. This growth is normally left out in all government surveys (even in national population census), as this cannot be grouped under either urban or rural centre. The investigation of patterns of growth is very crucial from regional planning point of view to provide basic amenities in the region. The growth patterns of urban sprawl can be analysed and understood with the availability of temporal multi-sensor, multi-resolution spatial data. In order to optimise these spectral and spatial resolutions, image fusion techniques are required. This aids in integrating a lower spatial resolution multispectral (MSS) image (for example, IKONOS MSS bands of 4m spatial resolution) with a higher spatial resolution panchromatic (PAN) image (IKONOS PAN band of 1m spatial resolution) based on a simple spectral preservation fusion technique - the Smoothing Filter-based Intensity Modulation (SFIM). Spatial details are modulated to a co-registered lower resolution MSS image without altering its spectral properties and contrast by using a ratio between a higher resolution image and its low pass filtered (smoothing filter) image. The visual evaluation and statistical analysis confirms that SFIM is a superior fusion technique for improving spatial detail of MSS images with the preservation of spectral properties.
Resumo:
Urbanisation has evinced interest from a wide section of the society including experts, amateurs, and novices. The multidisciplinary scope of the subject invokes the interest from ecologists, to urban planners and civil engineers, to sociologists, to administrators and policy makers, students and finally the common man. With the development and infrastructure initiatives mostly around the urban centres, the impacts of urbanisation and sprawl would be on the environment and the natural resources. The wisdom lies in how effectively we plan the urban growth without - hampering the environment, excessively harnessing the natural resources and eventually disturbing the natural set-up. The research on these help urban residents and policymakers make informed decisions and take action to restore these resources before they are lost. Ultimately the power to balance the urban ecosystems rests with regional awareness, policies, administration practices, management issues and operational problems. This publication on urban systems is aimed at helping scientists, policy makers, engineers, urban planners and ultimately the common man to visualise how towns and cities grow over a period of time based on investigations in the regions around the highway and cities. Two important highways in Karnataka, South India, viz., Bangalore - Mysore highway and the Mangalore - Udupi highway, in Karnataka and the Tiruchirapalli - Tanjavore - Kumbakonam triangular road network in Tamil Nadu, South India, were considered in this investigation. Geographic Information System and Remote Sensing data were used to analyse the pattern of urbanisation. This was coupled with the spatial and temporal data from the Survey of India toposheets (for 1972), satellite imageries procured from National Remote Sensing Agency (NRSA) (LANDSAT TM for 1987 and IRS LISS III for 1999), demographic details from the Census of India (1971, 1981, 1991 and 2001) and the village maps from the Directorate of Survey Settlements and Land Records, Government of Karnataka. All this enabled in quantifying the increase in the built-up area for nearly three decades. With intent of identifying the potential sprawl zones, this could be modelled and projected for the future decades. Apart from these the study could quantify some of the metrics that could be used in the study of urban sprawl.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1008/thumbnail.jpg
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A study of the relationships between the amount of energy consumed for transportation purposes and a few selected variables related to urban form and socioeconomic characteristics of some of the largest Brazilian cities is conducted in this work. The studied cities include all 27 state capitals regardless of their size and population and 184 urban areas each with more than 20,000 inhabitants located in the state of São Paulo. Two different techniques were applied for data analyses: a more traditional regression analysis approach and artificial neural networks. In general, the results found in the analyses conducted here support the assumption that urban sprawl increases the energy use for transportation. In the case of the 27 state capitals, the analysis indicated that two spatial variables have a strong impact on the energy consumed for urban transportation: urban density and the ratio between the longest distances in the east-west and north-south directions. In the case of the 184 urbanized areas we also reached a similar conclusion. In that case, however, income and employment level apparently have a stronger influence on the amount of energy consumed. The results of the present study stress the importance of physical planning in developing country cities in order to reduce energy use for transportation. © 2007 International Energy Initiative, Inc.
Resumo:
Public policies encouraging the insertion of large industrial and commercial developments near highways, associated to exclusionary housing policies, have shaped over the past decades a new urbanization phenomenon; the sprawl. This is largely characterized by discontinuous and fragmented occupation, with random population densities. This phenomenon brings environmental and social impacts to the urban and rural population, in addition to a great burden for the Government. In line with this and considering the lack of discussion about the topic, this paper discusses some of those impacts observed in Londrina - PR, Brazil. The influence of urban sprawl in this city has shown to impact traffic, waterproofing rates and green areas, in addition to underutilizing the infrastructure due to large urban voids and vacant lots. With the data presented here, it is hoped that debates emerge on the importance of rethinking the plan, so that everyone can have legal access to the city (endowed with infrastructure), as well as the importance of developing strategies to contain urban sprawl. © 2011 Journal of Urban and Environmental Engineering (JUEE). All rights reserved.
Resumo:
Lo sviluppo urbano avvenuto negli ultimi 20 anni soprattutto nelle grandi città, ma anche in quelle più piccole, è stato definito con il termine americano “urban sprawl”. In linea del tutto generale, lo sprawl può essere definito come la tendenza delle aree urbane a svilupparsi in maniera dispersa e disorganizzata nelle campagne circostanti. I principali impatti del fenomeno riguardano il consumo e l’impermeabilizzazione del suolo oltre a forti impatti su tutte le altre matrici ambientali. Per una corretta pianificazione necessita di essere studiato e quantificato nelle sue differenti declinazioni. Nella presente tesi vengono riportati i risultati della analisi diacronica nel Comune di Carpi (Provincia di Modena) attraverso una sequenza temporale di mappe dell’uso/copertura del suolo (1954,1976,1997,2003,2008) appositamente redatte. Vengono, in particolare, analizzati gli aspetti legati allo sviluppo urbano (del comune e delle frazioni di sua competenza) al fine di evidenziare l’occorrenza di sprawl. Ciò è stato fatto attraverso l’analisi degli andamenti dell’area urbana e di quella agricola nel tempo, delle trasformazioni principali avvenute nel territorio (sia in termini qualitativi che quantitativi), dell’evoluzione della rete infrastrutturale e infine mediante il calcolo di indici propri dell’ecologia del paesaggio utilizzati in molti studi sullo sprawl urbano. Dai risultati di questa analisi emerge che il territorio in esame si è fortemente trasformato dal 1954 al 1976; in particolare l’urbanizzazione è avvenuta in un primo tempo a carico del centro principale di Carpi e in seguito (1976-2008) ha interessato maggiormente le frazioni secondarie e l’edificato discontinuo lungo le principali infrastrutture viarie. Questo aspetto è attribuibile al fenomeno dello sprawl in termini di sviluppo periurbano e di invasione delle campagne. Il calcolo degli indici ha evidenziato che l’area urbana totale è fortemente dispersa, sia rispetto al centro principale che considerata come totale, fin dal 1954 (alta entropia relativa di Shannon) e contemporaneamente il territorio agricolo si presenta frammentato (Patch Density e Mean Patch Size) e con un’eterogeneità ambientale abbastanza limitata; questi indici non mostrano però un andamento che indichi un aumento dello sprawl nella sequenza temporale. Ciò che gli indici rilevano è l’urbanizzazione veloce e compatta avvenuta tra il 1954 ed il 1976. Il presente studio rivela quindi l’inadeguatezza degli indici scelti ad evidenziare il fenomeno dello sprawl negli ultimi vent’anni nel territorio d’indagine a causa della bassa sensibilità a trasformazioni molto moderate ed a scale di dettaglio dell’area urbana molto piccole.
Resumo:
Developers attempting land assembly often face a potential holdout problem that raises the cost of development. To minimize this extra cost, developers will prefer land whose ownership is less dispersed. This creates a bias toward development at the urban fringe where average lot sizes are larger, resulting in urban sprawl. This paper examines the link between the holdout problem and urban sprawl and discusses possible remedies.
Resumo:
For decades, American towns and cities have expanded from their established cores into the surrounding rural areas. U.S. population has grown but the land that we use has grown at an even faster pace, and our country has now become a largely suburban nation. Americans moved and continue to move out to the suburbs in search of better lives – for clean and healthy living, for larger homes, and for better resources. In many ways and for many Americans, the suburban lifestyle has been a great success. However, there are some unintended public health consequences of urban sprawl that must be recognized. As most Americans no longer walk or bicycle, increasingly sedentary lifestyles now contribute to greater levels of obesity, diabetes and other associated chronic diseases. This thesis reviewed the impacts of urban sprawl on the public's health specifically, as sprawl relates to decreased physical activity rates and increased obesity rates. The health effects and their connection with sprawl were identified, and available evidence was reviewed. Finally, this thesis described legal and policy solutions for addressing the health effect through improving the design of our built environment and by recommending that governments adopt and implement Smart Growth statutes that incorporate a public health component and require public health involvement. ^
Resumo:
The main contribution of this research paper is to display a range of figures and values which could help urban planners to quantify the urban phenomenon of sprawl. In this way, after a rigorous analysis and comparison between a scattered urban fabric (Majadahonda) and a compact urban fabric (Alcorcón), several possible indexes are established and characterized in order to verify the main hypothesis: in what extent land consumption and exploitation of energy resources are higher in a scattered urban fabric than in a compact one.
Resumo:
The last few decades have seen rapid proliferation of hard artificial structures (e.g., energy infra-structure, aquaculture, coastal defences) in the marine environment: ocean sprawl. The replacement of natural, often sedimentary, substrata with hard substrata has altered the distribution of species, particularly non-indigenous species, and can facilitate the assisted migration of native species at risk from climate change. This has been likened to urbanization as a driver of global biotic homogenization in the marine environment—the process by which species invasions and extinctions increase the genetic, taxonomic, or functional similarity of communities at local, regional, and global scales. Ecological engineering research showed that small-scale engineering interventions can have a significant positive effect on the biodiversity of artificial structures, promoting more diverse and resilient communities on local scales. This knowledge can be applied to the design of multifunctional structures that provide a range of ecosystem services. In coastal regions, hybrid designs can work with nature to combine hard and soft approaches to coastal defence in a more environmentally sensitive manner. The challenge now is to manage ocean sprawl with the dual goal of supporting human populations and activities, simultaneously strengthening ecosystem resilience using an ecosystem- based approach.