914 resultados para Sporadic Colorectal-cancer
Resumo:
Sporadic colorectal cancer (CRC) characterized by high-level DNA microsatellite instability (MSI-H) has a favorable prognosis. The reason for this MSI-H survival advantage is not known. The aim of this study was to correlate proliferation, apoptosis, and prognosis in CRC stratified by MSI status. The proliferative index (PI) was measured by immunohistochemical staining with the Ki-67 antibody in a selected series of 100 sporadic colorectal cancers classified according to the level of MSI as 31 MSI-H, 29 MSI-Low (MSI-L), and 40 microsatellite stable (MISS). The Ki-67 index was significantly higher in MSI-H cancers (P < 0.0001) in which the PI was 90.1 1.2% (mean +/- SE) compared with 69.5 +/- 3.1 % and 69.5 +/- 2.3 % in MSI-L and MSS subgroups, respectively. There was a positive linear correlation between the apoptotic index (AI) and PI (r = 0.51; P < 0.001), with MSI-H cancers demonstrating an increased AI:PI ratio indicative of a lower index of cell production. A high PI showed a trend toward predicting improved survival within MSI-H cancers (P = 0.09) but did not predict survival in MSI-L or MSS cancers. The Al was not associated with survival in any MSI subgroup. In conclusion, this is the first study to show that sporadic MSI-H cancers are characterized by a higher AL:PI ratio and increased proliferative activity compared with MSI-L and MSS cancers, and that an elevated PI may confer a survival advantage within the MSI-H subset.
Resumo:
The development of colorectal cancer is a major complication for patients with chronic idiopathic colitis. Colitis-associated tumours tend to occur at a younger age and be more aggressive than sporadic colorectal cancers. While we have previously associated the presence of tumour-infiltrating lymphocytes (TILs) and increased apoptosis in sporadic colorectal cancer with high-level microsatellite instability and improved prognosis, little is known of the relationship between these variables in colitis-associated colorectal cancer. The aim of this study was to correlate TILs and tumour cell apoptosis in colitis-associated neoplasms stratified according to microsatellite instability. Twenty tumour and 11 dysplastic samples resected from 21 patients with long-standing colitis were analysed for microsatellite instability at 10 microsatellite markers. TIL distribution (CD3, CD8) and function (granzyme B) were quantified by immunohistochemistry. Neoplastic cell apoptosis was assessed using the M30 CytoDEATH antibody. These findings were compared with 40 microsatellite stable (MSS) sporadic colorectal cancers previously evaluated for TILs and neoplastic apoptosis. Low-level microsatellite instability was found in 1/20 colitis-associated tumours. All other colitis-associated lesions were designated MSS. CD3(+) and CD8(+) TIL counts were significantly higher in colitis-associated lesions compared with NISS sporadic colorectal cancer (p < 0.0001, p = 0.001 respectively). Despite their higher TIL density, colitis-associated tumours were more likely to present late (Dukes' stage C or D) (P = 0.02). Functionally, colitis-associated TILs demonstrated significantly less granzyme B expression compared to sporadic cancers (p = 0.002). The level of tumour cell apoptosis was similar between the two groups (sporadic, 1.53%; colitis cancers, 1.45%). In conclusion, NISS colitis-associated tumours have a higher prevalence of CD3(+)/CD8(+) TILs but no associated increase in tumour cell killing by apoptosis. Unlike cytotoxic T cells in sporadic colorectal cancer, TILs do not appear to enhance the prognosis of colitis-associated colorectal cancer. This may be related to an impairment of granzyme B expression within these lesions. Copyright (c) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Expression of membrane-bound Fas ligand (FasL) by colorectal cancer cells may allow the development of an immune-privileged site by eliminating incoming tumour-infiltrating lymphocytes (TILs) in a Fas-mediated counter-attack. Sporadic colorectal cancer can be subdivided into three groups based on the level of DNA microsatellite instability (NISI). High-level NISI (NISI-High) is characterized by the presence of TILs and a favourable prognosis, while microsatellite-stable (MSS) cancers are TIL-deficient and low-level MSI (MSI-Low) is associated with an intermediate TIL density. The purpose of this study was to establish the relationship between MSI status and FasL expression in primary colorectal adenocarcinoma. Using immunohistochemistry and a selected series of 101 cancers previously classified as 31 MSI-High, 30 NISI-Low, and 40 MISS, the present study sought to confirm the hypothesis that increased TIL density in MSI-High cancers is associated with low or absent membrane-bound FasL expression, while increased FasL in MSS cancers allows the killing of host TILs. TUNEL/CD3 double staining was also used to determine whether MSS cancers contain higher numbers of apoptotic TILs in vivo than MSI-High or MSI-Low cancers. Contrary to the initial hypothesis, it was found that MSI-High cancers were associated with higher FasL expression (p = 0.04) and a stronger intensity of FasL staining (p = 0.007). In addition, mucinous carcinomas were independently characterized by increased FasL expression (p = 0.03) and staining intensity (p = 0.0005). Higher FasL expression and staining intensity did not correlate with reduced TIL density or increased numbers of apoptotic TILs. However, consistent with the hypothesis that curtailment of the host anti-tumour immune response contributes to the poor prognosis in MSS cancers, it was found that apoptotic TILs were most abundant in MSS carcinomas and metastatic Dukes' stage C or D tumours (p = 0.004; p = 0.046 respectively). This study therefore suggests that MSS colorectal cancers are killing incoming TILs in an effective tumour counter-attack, but apparently not via membrane-bound FasL. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Inflammatory bowel diseases are associated with increased risk of developing colitis-associated colorectal cancer (CAC). Epidemiological data show that the consumption of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) decreases the risk of sporadic colorectal cancer (CRC). Importantly, recent data have shown that eicosapentaenoic acid-free fatty acid (EPA-FFA) reduces polyps formation and growth in models of familial adenomatous polyposis. However, the effects of dietary EPA-FFA are unknown in CAC. We tested the effectiveness of substituting EPA-FFA, for other dietary fats, in preventing inflammation and cancer in the AOM-DSS model of CAC. The AOM-DSS protocols were designed to evaluate the effect of EPA-FFA on both initiation and promotion of carcinogenesis. We found that EPA-FFA diet strongly decreased tumor multiplicity, incidence and maximum tumor size in the promotion and initiation arms. Moreover EPA-FFA, in particular in the initiation arm, led to reduced cell proliferation and nuclear β-catenin expression, whilst it increased apoptosis. In both arms, EPA-FFA treatment led to increased membrane switch from ω-6 to ω-3 PUFAs and a concomitant reduction in PGE2 production. We observed no significant changes in intestinal inflammation between EPA-FFA treated arms and AOM-DSS controls. Importantly, we found that EPA-FFA treatment restored the loss of Notch signaling found in the AOM-DSS control, resulted in the enrichment of Lactobacillus species in the gut microbiota and led to tumor suppressor miR34-a induction. In conclusion, our data suggest that EPA-FFA is an effective chemopreventive agent in CAC.
Resumo:
Colorectal cancer is the forth most common diagnosed cancer in the United States. Every year about a hundred forty-seven thousand people will be diagnosed with colorectal cancer and fifty-six thousand people lose their lives due to this disease. Most of the hereditary nonpolyposis colorectal cancer (HNPCC) and 12% of the sporadic colorectal cancer show microsatellite instability. Colorectal cancer is a multistep progressive disease. It starts from a mutation in a normal colorectal cell and grows into a clone of cells that further accumulates mutations and finally develops into a malignant tumor. In terms of molecular evolution, the process of colorectal tumor progression represents the acquisition of sequential mutations. ^ Clinical studies use biomarkers such as microsatellite or single nucleotide polymorphisms (SNPs) to study mutation frequencies in colorectal cancer. Microsatellite data obtained from single genome equivalent PCR or small pool PCR can be used to infer tumor progression. Since tumor progression is similar to population evolution, we used an approach known as coalescent, which is well established in population genetics, to analyze this type of data. Coalescent theory has been known to infer the sample's evolutionary path through the analysis of microsatellite data. ^ The simulation results indicate that the constant population size pattern and the rapid tumor growth pattern have different genetic polymorphic patterns. The simulation results were compared with experimental data collected from HNPCC patients. The preliminary result shows the mutation rate in 6 HNPCC patients range from 0.001 to 0.01. The patients' polymorphic patterns are similar to the constant population size pattern which implies the tumor progression is through multilineage persistence instead of clonal sequential evolution. The results should be further verified using a larger dataset. ^
Resumo:
Attempts to classify colorectal cancer into subtypes based upon molecular characterisation are overshadowed by the classical stepwise model in which the adenoma-carcinoma sequence serves as the morphological counterpart. Clarity is achieved when cancers showing DNA microsatellite instability (MSI) are distinguished as sporadic MSI-low (MSI-L), sporadic MSI-high (MSI-H) and hereditary non-polyposis colorectal cancer (HNPCC). Divergence of the 'methylator' pathway into MSI-L and MSI-H is at least partly determined by the respective silencing of MGMT and hMLH1. Multiple differences can be demonstrated between sporadic and familial (HNPCC) MSI-H colorectal cancer with respect to early mechanisms, evolution, molecular characterisation, demographics and morphology. By acknowledging the existence of multiple pathways, rapid advances in the fields of basic and translational research will occur and this will lead to improved strategies for the prevention, early detection and treatment of colorectal cancer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The significance of low-level DNA microsatellite instability (MSI-L) is not well understood. K-ras mutation is associated with MSI-L colorectal cancer and with the silencing of the DNA repair gene O-6-methylguanine DNA methyltransferase (MGMT) by methylation of its promoter region. MGMT methylation was studied in sporadic colorectal cancers stratified as DNA microsatellite instability-high (n = 23), MSI-L (n = 44), and microsatellite-stable (n = 23). Methylation-specific PCR was used to detect MGMT-promoter hypermethylation in 3 of 23 (13%) microsatellite instability-high, in 28 of 44 (64%) MSI-L, and in 6 of 23 (26%) microsatellite-stable cancers (P = 0.0001). K-ras was mutated in 20 of 29 (69%) methylated MSI-L cancers and in 2 of 15 (13%) unmethylated MSI-L cancers (P = 0.001), indicating a relationship between MGMT-methylation and mutation of K-ras. Loss of nuclear expression of MGMT was demonstrated immunohistochemically in 23 of 31 (74%) cancers with methylated MGMT and in 10 of 49 (20%) cancers with nonmethylated MGMT (P < 0.0001). Loss of expression of MGMT was also demonstrated in 9 of 31 serrated polyps. Silencing of MGMT may predispose to mutation by overwhelming the DNA mismatch repair system and occurs with greatest frequency in MSI-L colorectal cancers.
Resumo:
Molecular events in early colorectal cancers (CRCs) have not been well elucidated because of the low incidence of early CRCs in clinical practice. Therefore, we studied 104 sporadic early CRCs with invasion limited to submucosa compared with 116 advanced CRCs. Loss of heterozygosity as well as microsatellite instability (MSI) status was examined. A significantly high frequency of low-level MSI (MSI-L) phenotype was detected in early CRCs (51.0%) compared with advanced CRCs (25.9%; P = 0.0001). In early and advanced CRCs, samples with MSI-L phenotype differed from microsatellite stable (MSS) phenotype with respect to loss of heterozygosity at 1p32 and 8p12-22. MSI-L is a frequent genetic event in early CRCs and may be a novel pathway in colorectal carcinogenesis distinct from both MSI-H and MSS.
Resumo:
Background-The presence of high level DNA microsatellite instability (MSI-H) in colorectal cancer is associated with an improved prognosis, as is the presence of tumour infiltrating lymphocytes (TILs). It is not clear if TILs contribute directly to the survival advantage associated with MSI-H cancers through activation of an antitumour immune response. Aims-To correlate TIL and apoptosis rates in colorectal cancer stratified by MSI status. Methods-The distribution of TILs was characterised and quantified in a selected series of 102 sporadic colorectal cancers classified according to levels of MSI as 32 MSI-H, 30 MSI-low (MSI-L), and 40 microsatellite stable (MSS). Archival blocks were immunostained using the T cell markers CD3 and CD8, and the B cell marker CD20. Apoptosis of malignant epithelial cells was quantified by immunohistochemistry with the M30 CytoDEATH antibody. Results-Positive staining with anti-CD3 and negative staining with anti-CD20 identified virtually all TILs as T cells. The majority of CD3(+) TILs (>75%) also stained with anti-CDS. TILs were most abundant in MSI-H colorectal cancers in which 23/32 (72%) scored as TIL positive. Only 5/40 (12.5%) MSS tumours and 9/30 (30%) MSI-L cancers were TIL positive (p
Resumo:
The past decade has seen the emergence of new pathways in the development of colorectal cancer. There is now clear evidence that subsets of these tumours do not show chromosomal instability and do not follow the suppressor pathway. Instead, about 15% of colorectal cancers are characterised by microsatellite instability (MSI). This feature arises through defective DNA mismatch repair, which is related either to a germline mutation (as in hereditary non-polyposis colorectal carcinoma) or to failure to express a mismatch-repair gene. CpG-island methylation has been linked to sporadic cancers with a high frequency of MSI. This type of methylation leads to loss of gene expression when it occurs in the promoter region of a gene. Tumours may have high or low type C (cancer-related) CpG-island methylation. When methylation affects hMLH1 (mismatch repair gene), the resultant cancer has high MSI.
Resumo:
PURPOSE: The aim of this study was to determine whether tumor location proximal or distal to the splenic flexure is associated with distinct molecular patterns and can predict clinical outcome in a homogeneous group of patients with Dukes B (T3-T4, N0, M0) colorectal cancer. It has been hypothesized that proximal and distal colorectal cancer may arise through different pathogenetic mechanisms. Although p53 and Ki-ras gene mutations occur frequently in distal tumors, another form of genomic instability associated with defective DNA mismatch repair has been predominantly identified in the proximal colon. To date, however, the clinical usefulness of these molecular characteristics remains unproven. METHODS: A total of 126 patients with a lymph node-negative sporadic colon or rectum adenocarcinoma were prospectively assessed with the endpoint of death by cancer. No patient received either radiotherapy or chemotherapy. p53 protein was studied by immunohistochemistry using DO-7 monoclonal antibody, and p53 and Ki-ras gene mutations were detected by single strand conformation polymorphism assay. RESULTS: During a mean follow-up of 67 months, the overall five-year survival was 70 percent. Nuclear p53 staining was found in 57 tumors (47 percent), and was more frequent in distal than in proximal tumors (55 vs. 21 percent; chi-squared test, P < 0.001). For the whole group, p53 protein expression correlated with poor survival in univariate and multivariate analysis (log-rank test, P = 0.01; hazard ratio = 2.16; 95 percent confidence interval = 1.12-4.11, P = 0.02). Distal colon tumors and rectal tumors exhibited similar molecular patterns and showed no difference in clinical outcome. In comparison with distal colorectal cancer, proximal tumors were found to be statistically significantly different on the following factors: mucinous content (P = 0.008), degree of histologic differentiation (P = 0.012), p53 protein expression, and gene mutation (P = 0.001 and 0.01 respectively). Finally, patients with proximal tumors had a marginally better survival than those with distal colon or rectal cancers (log-rank test, P = 0.045). CONCLUSION: In this series of Dukes B colorectal cancers, p53 protein expression was an independent factor for survival, which also correlated with tumor location. Eighty-six percent of p53-positive tumors were located in the distal colon and rectum. Distal colon and rectum tumors had similar molecular and clinical characteristics. In contrast, proximal neoplasms seem to represent a distinct entity, with specific histopathologic characteristics, molecular patterns, and clinical outcome. Location of the neoplasm in reference to the splenic flexure should be considered before group stratification in future trials of adjuvant chemotherapy in patients with Dukes B tumors.
Resumo:
AbstractBACKGROUND: Patients suffering from ulcerative colitis (UC) bear an increased risk for colorectal cancer. Due to the sparsity of colitis-associated cancer (CAC) and the long duration between UC initiation and overt carcinoma, elucidating mechanisms of inflammation-associated carcinogenesis in the gut is particularly challenging. Adequate murine models are thus highly desirable. For human CACs a high frequency of chromosomal instability (CIN) reflected by aneuploidy could be shown, exceeding that of sporadic carcinomas. The aim of this study was to analyze mouse models of CAC with regard to CIN. Additionally, protein expression of p53, beta-catenin and Ki67 was measured to further characterize murine tumor development in comparison to UC-associated carcinogenesis in men.METHODS: The AOM/DSS model (n = 23) and IL-10(-/-) mice (n = 8) were applied to monitor malignancy development via endoscopy and to analyze premalignant and malignant stages of CACs. CIN was assessed using DNA-image cytometry. Protein expression of p53, beta-catenin and Ki67 was evaluated by immunohistochemistry. The degree of inflammation was analyzed by histology and paralleled to local interferon-γ release.RESULTS: CIN was detected in 81.25% of all murine CACs induced by AOM/DSS, while all carcinomas that arose in IL-10(-/-) mice were chromosomally stable. Beta-catenin expression was strongly membranous in IL-10(-/-) mice, while 87.50% of AOM/DSS-induced tumors showed cytoplasmatic and/or nuclear translocation of beta-catenin. p53 expression was high in both models and Ki67 staining revealed higher proliferation of IL-10(-/-)-induced CACs.CONCLUSIONS: AOM/DSS-colitis, but not IL-10(-/-) mice, could provide a powerful murine model to mechanistically investigate CIN in colitis-associated carcinogenesis.PMID: 21799775 [PubMed - in process] PMCID: PMC3142131Free PMC Article
Resumo:
BACKGROUND It is known that mitochondria play an important role in certain cancers (prostate, renal, breast, or colorectal) and coronary disease. These organelles play an essential role in apoptosis and the production of reactive oxygen species; in addition, mtDNA also reveals the history of populations and ancient human migration. All these events and variations in the mitochondrial genome are thought to cause some cancers, including prostate cancer, and also help us to group individuals into common origin groups. The aim of the present study is to analyze the different haplogroups and variations in the sequence in the mitochondrial genome of a southern European population consisting of subjects affected (n = 239) and non-affected (n = 150) by sporadic prostate cancer. METHODOLOGY AND PRINCIPAL FINDINGS Using primer extension analysis and DNA sequencing, we identified the nine major European haplogroups and CR polymorphisms. The frequencies of the haplogroups did not differ between patients and control cohorts, whereas the CR polymorphism T16356C was significantly higher in patients with PC compared to the controls (p = 0.029). PSA, staging, and Gleason score were associated with none of the nine major European haplogroups. The CR polymorphisms G16129A (p = 0.007) and T16224C (p = 0.022) were significantly associated with Gleason score, whereas T16311C (p = 0.046) was linked with T-stage. CONCLUSIONS AND SIGNIFICANCE Our results do not suggest that mtDNA haplogroups could be involved in sporadic prostate cancer etiology and pathogenesis as previous studies performed in middle Europe population. Although some significant associations have been obtained in studying CR polymorphisms, further studies should be performed to validate these results.
Resumo:
Mutations of the TP53 and Ki-ras genes have been reported to be of prognostic importance in colorectal carcinomas. An increased intracellular concentration of the p53 protein, although not identical to, is sometimes seen in tumours with TP53 mutation and has been correlated with poor prognosis in some tumour types. Previous colorectal cancer studies, addressing the prognostic importance of Ki-ras mutation and TP53 aberrations, yielded contradictory results. The aim of this study was to determine in a clinically and therapeutically homogeneous group of 122 sporadic Dukes' B colorectal carcinomas with a median follow-up of 67 months (3-144 months) whether or not p53 protein expression, TP53 mutation and K-ras mutation correlated with prognosis. p53 staining was performed by immunohistochemistry, using the monoclonal antibody DO7 on paraffin-embedded tissue. Mutations in exons 5-8 of the TP53 gene and in codons 12 and 13 of the K-ras gene were assayed in paraffin-embedded tissue by the single-strand conformation polymorphism (SSCP) assay. Nuclear p53 staining was found in 57 (47%) tumours. Aberrant migration patterns indicating mutation of the TP53 gene were found in 39 (32%) tumours. Forty-six carcinomas (38%) showed a mutation of the Ki-ras codons 12 or 13. In a univariate analysis, patients with wild-type TP53 status showed a trend towards better survival, compared with those with mutated TP53 (log-rank test, P = 0.051). Likewise, tumours immunohistochemically positive for p53 showed a worse prognosis than p53-negative tumours (P = 0.010). The presence or absence of mutations in Ki-ras did not correlate with prognosis (P = 0.703). In multivariate analysis, only p53 immunoreactivity emerged as an independent marker for prognosis hazard ratio (HR) = 2.16, 95% confidence interval (CI) 1.12-4.11, P = 0.02). Assessment of p53 protein expression is more discriminative than TP53 mutation to predict the outcome of Dukes' stage B tumours and could be a useful tool to identify patients who might benefit from adjuvant therapy.