916 resultados para Spinning-wall
Analyse des processus de dérive lors de la gravure profonde du silicium dans des plasmas SF6 et C4F8
Resumo:
L’objectif de ce mémoire de maîtrise est de développer des outils de diagnostics non-invasifs et de caractériser in-situ les dérives de procédé dans un réacteur industriel utilisé en production pour la gravure profonde du silicium par le procédé Bosch. Ce dernier repose sur l’alternance d’un plasma de SF6 pour la gravure isotrope du Si et d’un plasma de C4F8 pour la passivation des parois dans l’optique d’obtenir des tranchées profondes et étroites. Dans un premier temps, nous avons installé une sonde courant-tension sur la ligne de transmission du signal rf au porte-substrat pour l’étude de son impédance caractéristique et un spectromètre optique pour l’étude de l’émission optique du plasma. Nos travaux ont montré que l’évolution temporelle de l’impédance constitue un excellent moyen pour identifier des changements dans la dynamique du procédé, notamment une gravure complète de la photorésine. De plus, à partir des spectres d’émission, nous avons pu montrer que des produits carbonés sont libérés du substrat et des parois lors de l’alternance passivation/gravure et que ceux-ci modifient considérablement la concentration de fluor atomique dans le plasma. Dans un second temps, nous avons développé un réacteur à « substrat-tournant » pour l’analyse in-situ des interactions plasma-parois dans le procédé Bosch. Nos travaux sur ce réacteur visaient à caractériser par spectrométrie de masse l’évolution temporelle des populations de neutres réactifs et d’ions positifs. Dans les conditions opératoires étudiées, le SF6 se dissocie à près de 45% alors que le degré de dissociation du C4F8 atteint 70%. Le SF6 est avant tout dissocié en F et SF3 et l’ion dominant est le SF3+ alors que le C4F8 est fragmenté en CF, CF3 et CF4 et nous mesurons plusieurs ions significatifs. Dans les deux cas, la chaîne de dissociation demeure loin d’être complète. Nous avons noté une désorption importante des parois de CF4 lors du passage du cycle de passivation au cycle de gravure. Un modèle d’interactions plasmas-parois est proposé pour expliquer cette observation.
Resumo:
Neem oil is a biopesticide that disturbs the endocrine and neuroendocrine systems of pests and may interfere with molting, metamorphosis and cocoon spinning. The cocoon serves protective functions for the pupa during metamorphosis, and these functions are dependent on cocoon structure. To assess the changes in cocoon spinning caused by neem oil ingestion, Ceraeochrysa claveri larvae, a common polyphagous predator, were fed with neem oil throughout the larval period. When treated with neem oil, changes were observed on the outer and inner surfaces of the C. claveri cocoon, such as decreased wall thickness and impaired ability to attach to a substrate. These negative effects may reduce the effectiveness of the mechanical and protective functions of cocoons during pupation, which makes the specimen more vulnerable to natural enemies and environmental factors. © 2013 Elsevier Inc.
Resumo:
PURPOSE: To evaluate an experimental animal model to study the abdominal tissue activity considering its interaction with a polypropylene mesh, through the use of one of the optical phenomena of light Laser, the biospeckle. METHODS: Fifty Wistar male rats were divided into four groups: Group 1: ten animals not submitted to surgery; Group 2: ten animals submitted to surgery without polypropylene mesh; Group 3: 20 animals submitted to surgery followed by the mesh placement; Group 4: (sham) with ten animals. None of the animals presented post surgical complications being submitted to the optical tests at the 20th postoperative day. RESULTS: The analysis from the biospeckle tests, comparing the medians and standard deviations with T Student test, indicated that no significative difference was observed on the abdominal wall tissue activity in the four groups considered, with and without polypropylene mesh prosthesis implantation. CONCLUSION: The animal model is viable and the biospeckle open ways for a great number of experiments to be developed in evaluating tissue activity.
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.
Resumo:
This research work focuses on the analysis of hydraulic transients in polyvinyl chloride (PVC) pipes, which are characterized by a viscoelastic rheological behavior. Transient pressure data were collected in a pipe rig consisting of a set of PVC pipes. The creep function of the PVC pipes was determined by using an inverse transient model based on collected transient pressure data and compared with that obtained by carrying out mechanical tensile tests of PVC pipe specimens. The numerical results obtained from the transient solver have shown that the attenuation, dispersion, and shape of transient pressures were well described. The incorporation of the viscoelastic mechanical behavior in the hydraulic transient model has provided an excellent fitting between numerical results and observed data. Calibrated creep function based on inverse analysis fit the one determined by mechanical tests well, which emphasized the importance of pipe-wall viscoelasticity in hydraulic transients in PVC pipes.
Resumo:
The magnetic Barkhausen noise (MBN) is a phenomenon sensitive to several kinds of magnetic material microstructure changes, as well as to variations in material plastic deformation and stress. This fact stimulates the development of MBN-based non-destructive testing (NDT) techniques for analyzing magnetic materials, being the proposition of such a method, the main objective of the present study. The behavior of the MBN signal envelope, under simultaneous variations of carbon content and plastic deformation, is explained by the domain wall dynamics. Additionally, a non-destructive parameter for the characterization of each of these factors is proposed and validated through the experimental results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The microstructure and texture of melt-spun UNS S31803 (DIN W. Nr. 1. 4462) duplex stainless steel were analyzed after casting and solution treatment. The cast ribbons contained austenite (gamma) and ferrite (alpha or delta) with roughly equal compositions. The alpha and gamma had < 100 > and < 110 > partial fiber textures, respectively. After solution treatment, the texture was maintained, the amount of gamma phase increased, and the alloying elements were partitioned as expected, according to whether they were ferrite or austenite stabilizers. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
All textile uses of cellulose acetate involve acetone recovery, which, because of safety issues, results in large installations, in order to work with dilute streams. This compromises the efficiency of all of the involved unit operations, in this case, acetone absorption in cold water, acetone distillation, and water chilling, making them more expensive. The present article proposes the improvement of the absorption of acetone in water, traditionally performed with sieve trays, by using structured packing instead. The advantageous implementation was enabled through the utilization of a calculation methodology based on concepts of thermodynamic equilibrium of the binary acetone/water system and empirical relations that allow the evaluation of the hydrodynamics of the proposed modification.
Resumo:
Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging. (E-mail: matheuscardosomg@hotmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.
Resumo:
Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1-4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates.
Resumo:
Stone clad wall to filter room beside pool deck.
Resumo:
As seen from adjacent garden area.
Resumo:
As seen from adjacent garden area.
Resumo:
View through pool area wall opening to neighbouring houses beyond.