493 resultados para Spines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rat posterodorsal medial amygdala (MePD) is a brain area in which gonadal hormones induce notable plastic effects in the density of dendritic spines. Dendritic spines are post-synaptic specializations whose shape and spacing change neuronal excitability. Our aim was to obtain new data on the dendritic spines morphology and density from MePD neurons using the carbocyanine dye Dil under confocal microscopy. In adult male rats, the dendritic spine density of the medial branches of the left MePD (mean +/- SD) was 1.15 +/- 0.67 spines/dendritic mu m. From the total sampled, approximately 53% of the spines were classified as thin, 22.5% as ""mushroom-like"", and 21.5% as stubby/wide. Other spine shapes (3%) included those ramified, with a filopodium-like or a gemule appearance, and others with a protruding spinule. Additional experiment joining Dil and synaptophysin (a pre-synaptic protein) labeling suggested synaptic sites on dendritic shafts and spines. Dendritic spines showed synaptophysin puncta close to their head and neck, although some spines had no evident labeled puncta on them or, conversely, multiple puncta appeared upon one spine. These results advance previous light microscopy results by revealing features and complexities of the dendritic spines at the same time that give new insight on the possible synaptic organization of the adult rat MePD. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Echinobothrium chisholmae n. sp. is described from Rhinobatos typus Bennett (Rhinobatidae), collected from Heron Island, Great Barrier Reef, Australia. E. chisholmae differs from all congeners in possessing 11 hooks in each dorsal and ventral group on the rostellum and groups of 3-6 hooklets on either side of the hooks. A single metacestode of E. chisholmae was collected from the decapod crustacean Penaeus longistylus Kubo. Yellow pigmentation of the cephalic peduncle in immature adults is caused by the accumulation of large vesicles in the distal cytoplasm of the tegument. The vesicles probably provide materials for spine formation. Ultrastructural examination of the rostellar musculature revealed that the muscles are stratified (striated-like), consisting of a periodic repetition of sarcomeres separated by perforated Z-like lines that are oblique to the long axes of the myofilaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Título anterior de la publicación: Boletín de la Comisión Española de la UNESCO

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological evidence using Infrared Video Microscopy during the uncaging of glutamate has proven the existence of excitable calcium ion channels in spine heads, highlighting the need for reliable models of spines. In this study we compare the three main methods of simulating excitable spines: Baer & Rinzel's Continuum (B&R) model, Coombes' Spike-Diffuse-Spike (SDS) model and paired cable and ion channel equations (Cable model). Tests are done to determine how well the models approximate each other in terms of speed and heights of travelling waves. Significant quantitative differences are found between the models: travelling waves in the SDS model in particular are found to travel at much lower speeds and sometimes much higher voltages than in the Cable or B&R models. Meanwhile qualitative differences are found between the B&R and SDS models over realistic parameter ranges. The cause of these differences is investigated and potential solutions proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sea urchin, Echinometra lucunter, can be found along the Western Central Atlantic shores. In Brazil, it is responsible by circa 50% of the accidents caused by marine animals. The symptoms usually surpass trauma and may be pathologically varied and last differently, ranging from spontaneous healing in a few days, to painful consequences lasting for weeks. In this work, we have mimicked the sea urchin accident by administering an aqueous extract of the spine into mice and rats and evaluated the pathophysiological developments. Our data clearly indicate that the sea urchin accident is indeed a pro-inflammatory event, triggered by toxins present in the spine that can cause edema and alteration in the leukocyte-endothelial interaction. Moreover, the spine extract was shown to exhibit a hyperalgesic effect. The extract is rich in proteins, as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but also contains other molecules that can be analyzed by reversed phase high-performance liquid chromatography. Altogether, these effects corroborate that an E. lucunter encounter is an accident and not an incident, as frequently reported by the victims.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The granule cells of the dentate gyrus give rise to thin unmyelinated axons, the mossy fibers. They form giant presynaptic boutons impinging on large complex spines on the proximal dendritic portions of hilar mossy cells and CA3 pyramidal neurons. While these anatomical characteristics have been known for some time, it remained unclear whether functional changes at mossy fiber synapses such as long-term potentiation (LTP) are associated with structural changes. Since subtle structural changes may escape a fine-structural analysis when the tissue is fixed by using aldehydes and is dehydrated in ethanol, rapid high-pressure freezing (HPF) of the tissue was applied. Slice cultures of hippocampus were prepared and incubated in vitro for 2 weeks. Then, chemical LTP (cLTP) was induced by the application of 25 mM tetraethylammonium (TEA) for 10 min. Whole-cell patch-clamp recordings from CA3 pyramidal neurons revealed a highly significant potentiation of mossy fiber synapses when compared to control conditions before the application of TEA. Next, the slice cultures were subjected to HPF, cryosubstitution, and embedding in Epon for a fine-structural analysis. When compared to control tissue, we noticed a significant decrease of synaptic vesicles in mossy fiber boutons and a concomitant increase in the length of the presynaptic membrane. On the postsynaptic side, we observed the formation of small, finger-like protrusions, emanating from the large complex spines. These short protrusions gave rise to active zones that were shorter than those normally found on the thorny excrescences. However, the total number of active zones was significantly increased. Of note, none of these cLTP-induced structural changes was observed in slice cultures from Munc13-1 deficient mouse mutants showing severely impaired vesicle priming and docking. In conclusion, application of HPF allowed us to monitor cLTP-induced structural reorganization of mossy fiber synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate fixation properties of a new intervertebral anchored fusion device and compare these with ventral locking plate fixation. STUDY DESIGN: In vitro biomechanical evaluation. ANIMALS: Cadaveric canine C4-C7 cervical spines (n = 9). METHODS: Cervical spines were nondestructively loaded with pure moments in a nonconstraining testing apparatus to induce flexion/extension while angular motion was measured. Range of motion (ROM) and neutral zone (NZ) were calculated for (1) intact specimens, (2) specimens after discectomy and fixation with a purpose-built intervertebral fusion cage with integrated ventral fixation, and (3) after removal of the device and fixation with a ventral locking plate. RESULTS: Both fixation techniques resulted in a decrease in ROM and NZ (P < .001) compared with the intact segments. There were no significant differences between the anchored spacer and locking plate fixation. CONCLUSION: An anchored spacer appears to provide similar biomechanical stability to that of locking plate fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calmodulin (CaM) is a ubiquitous Ca(2+) buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca(2+)-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca(2+)-CaM-dependent enzymes: Ca(2+)/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca(2+) and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca(2+) ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca(2+) and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca(2+) signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca(2+)-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca(2+) channels, and to the microscopic injection rate of Ca(2+) ions. We also demonstrate that Ca(2+) saturation takes place via two different pathways depending on the Ca(2+) injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca(2+) sensors that can differentially transduce Ca(2+) influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca(2+)-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Camillo Golgi's "Reazione Nera" led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM) they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF), which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP) at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin), an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as an appropriate method for studying the fine structure and molecular composition of synapses on dendritic spines.