995 resultados para Spinel Structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New A2+Mo4+O3 oxides for A = Mn, Co and Zn crystallizing in a defect spinel structure have been prepared by hydrogen-reduction of the corresponding AMoO4 oxides. X-ray powder diffraction intensity analysis of the zinc compound indicates that the cation distribution is (Zn)t[Zn1/3Mo4/3□1/3]oO4. The defect spinels are metastable decomposing to a mixture of A2Mo3O8 and AO at high temperatures. Electrical and magnetic properties of the spinel phases are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic studies in manganites of spinel structure have been undertaken. We report on the magnetic properties of two particular cases, in which one of the transition metals, Mg2+ is non-magnetic (NiMgxMn2-xO4) or presents a stable oxidation state, Cu2+ (CoxCuyMnzO4, x + y + z = 3). The magnetic behaviour is described with respect to varying contents of cobalt, copper or manganese. A ferrimagnetic transition is observed at 110-120 K, which depends on the cobalt content. Presence of copper increases the coercive field by a factor of ten with respect to the parent compound NiMn2O4. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relation between the composition and electronic structure of the perfectly inverse spinel compound Zn7-xMxSb2O12 (M = Ni and Co) has been studied by powder X-ray diffraction and X-ray photoelectron spectroscopy. Changes in the site occupancy are associated with shifts in the core levels as observed in the core level spectral analyses. The configuration of the density of states in the valence band due to the Co and Ni states can be observed in the valence band spectra. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The layered double hydroxides (LDHs) of Co with trivalent cations decompose irreversibly to yield oxides with the spinel structure. Spinel formation is aided by the oxidation of Co(II) to Co(III) in the ambient atmosphere. When the decomposition is carried out under N-2, the oxidation of Co(II) is suppressed, and the resulting oxide has the rock salt structure. Thus, the Co-Al-CO32-/Cl- LDHs yield oxides of the type Co1- Al-x(2x/3)rectangle O-x/3, which are highly metastable, given the large defect concentration. This defect oxide rapidly reverts back to the original hydroxide on soaking in a Na2CO3 solution. Interlayer NO3- anions, on the other hand, decompose generating a highly oxidizing atmosphere, whereby the Co-Al-NO3- LDH decomposes to form the spinel phase even in a N-2 atmosphere. The oxide with the defect rock salt structure formed by the thermal decomposition of the Co-Fe-CO32- LDH under N2, on soaking in a Na2CO3 solution, follows a different kinetic pathway and undergoes a solution transformation into the inverse spinel Co(Co, Fe)(2)O-4. Fe3+ has a low octahedral crystal field stabilization energy and therefore prefers the tetrahedral coordination offered by the structure of the inverse spinel rather than the octahedral coordination of the parent LDH. Similar considerations do not hold in the case of Ga- and In-containing LDHs, given the considerable barriers to the diffusion of M3+ (M=Ga, In) from octahedral to tetrahedral sites owing to their large size. Consequently, the In-containing oxide residue reverts back to the parent hydroxide, whereas this reconstruction is partial in the case of the Ga-containing oxide. These studies show that the reversible thermal behavior offers a competing kinetic pathway to spinel formation. Suppression of the latter induces the reversible behavior in an LDH that otherwise decomposes irreversibly to the spinel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract: Activities in the spinel solid solution FexMg1-xAl2O4 saturated with alpha-Al2O3 have been measured for the compositional range 0 < X < 1 between 1100 and 1350 K using a bielectrolyte solid-state galvanic cell, which may be represented as Pt, Fe + FexMg1-xAl2O4 + alpha-Al2O3//(Y2O3)ThO2/ (CaO)ZrO2//Fe + FeAl2O4 + alpha-Al2O3, Pt Activities of ferrous and magnesium aluminates exhibit small negative deviations from Raoult's law. The excess free energy of mixing of the solid solution is a symmetric function of composition and is independent of temperature: Delta G(E) = -1990 X(1 - X J/mol. Theoretical analysis of cation distribution in spinel solid solution also suggests mild negative deviations from ideality. The lattice parameter varies linearly with composition in samples quenched from 1300 K. Phase relations in the FeO-MgO-Al2O3 system at 1300 K are deduced from the results of this study and auxiliary thermodynamic data from the literature. The calculation demonstrates the influence of intracrystalline ion exchange equilibrium between nonequivalent crystallographic sites in the spinel structure on intercrystalline ion exchange equilibrium between the monoxide and spinel solid solutions (tie-lines). The composition dependence of oxygen partial pressure at 1300 K is evaluated for three-phase equilibria involving the solid solutions Fe + FexMg1-xAl2O4 + alpha-Al2O3 and Fe + FeyMg1-yO + FexMg1-xAl2O4. Dependence of X, denoting the composition of the spinel solid solution, on parameter Y, characterizing the composition of the monoxide solid solution with rock salt structure, in phase fields involving the two solid solutions is elucidated. The tie-lines are slightly skewed toward the MgAl2O4 corner.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A Li-rich layered-spinel material with a target composition Li1.17Ni0.25Mn1.08O3 (xLiLi1/3Mn2/3]O-2.(1 - x) LiNi0.5Mn1.5O4, (x = 0.5)) was synthesized by a self-combustion reaction (SCR), characterized by XRD, SEM, TEM, Raman spectroscopy and was studied as a cathode material for Li-ion batteries. The Rietveld refinement results indicated the presence of monoclinic (LiLi1/3Mn2/3]O-2) (52%), spinel (LiNi0.5Mn1.5O4) (39%) and rhombohedral LiNiO2 (9%). The electrochemical performance of this Li-rich integrated cathode material was tested at 30 degrees C and compared to that of high voltage LiNi0.5Mn1.5O4 spinel cathodes. Interestingly, the layered-spinel integrated cathode material exhibits a high specific capacity of about 200 mA h g(-1) at C/10 rate as compared to 180 mA h g(-1) for LiNi0.5Mn1.5O4 in the potential range of 2.4-4.9 V vs. Li anodes in half cells. The layered-spinel integrated cathodes exhibited 92% capacity retention as compared to 82% for LiNi0.5Mn1.5O4 spinel after 80 cycles at 30 degrees C. Also, the integrated cathode material can exhibit 105 mA h g(-1) at 2 C rate as compared to 78 mA h g(-1) for LiNi0.5Mn1.5O4. Thus, the presence of the monoclinic phase in the composite structure helps to stabilize the spinel structure when high specific capacity is required and the electrodes have to work within a wide potential window. Consequently, the Li1.17Ni0.25Mn1.08O3 composite material described herein can be considered as a promising cathode material for Li ion batteries.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several types of seismological data, including surface wave group and phase velocities, travel times from large explosions, and teleseismic travel time anomalies, have indicated that there are significant regional variations in the upper few hundred kilometers of the mantle beneath continental areas. Body wave travel times and amplitudes from large chemical and nuclear explosions are used in this study to delineate the details of these variations beneath North America.

As a preliminary step in this study, theoretical P wave travel times, apparent velocities, and amplitudes have been calculated for a number of proposed upper mantle models, those of Gutenberg, Jeffreys, Lehman, and Lukk and Nersesov. These quantities have been calculated for both P and S waves for model CIT11GB, which is derived from surface wave dispersion data. First arrival times for all the models except that of Lukk and Nersesov are in close agreement, but the travel time curves for later arrivals are both qualitatively and quantitatively very different. For model CIT11GB, there are two large, overlapping regions of triplication of the travel time curve, produced by regions of rapid velocity increase near depths of 400 and 600 km. Throughout the distance range from 10 to 40 degrees, the later arrivals produced by these discontinuities have larger amplitudes than the first arrivals. The amplitudes of body waves, in fact, are extremely sensitive to small variations in the velocity structure, and provide a powerful tool for studying structural details.

Most of eastern North America, including the Canadian Shield has a Pn velocity of about 8.1 km/sec, with a nearly abrupt increase in compressional velocity by ~ 0.3 km/sec near at a depth varying regionally between 60 and 90 km. Variations in the structure of this part of the mantle are significant even within the Canadian Shield. The low-velocity zone is a minor feature in eastern North America and is subject to pronounced regional variations. It is 30 to 50 km thick, and occurs somewhere in the depth range from 80 to 160 km. The velocity decrease is less than 0.2 km/sec.

Consideration of the absolute amplitudes indicates that the attenuation due to anelasticity is negligible for 2 hz waves in the upper 200 km along the southeastern and southwestern margins of the Canadian Shield. For compressional waves the average Q for this region is > 3000. The amplitudes also indicate that the velocity gradient is at least 2 x 10-3 both above and below the low-velocity zone, implying that the temperature gradient is < 4.8°C/km if the regions are chemically homogeneous.

In western North America, the low-velocity zone is a pronounced feature, extending to the base of the crust and having minimum velocities of 7.7 to 7.8 km/sec. Beneath the Colorado Plateau and Southern Rocky Mountains provinces, there is a rapid velocity increase of about 0.3 km/sec, similar to that observed in eastern North America, but near a depth of 100 km.

Complicated travel time curves observed on profiles with stations in both eastern and western North America can be explained in detail by a model taking into account the lateral variations in the structure of the low-velocity zone. These variations involve primarily the velocity within the zone and the depth to the top of the zone; the depth to the bottom is, for both regions, between 140 and 160 km.

The depth to the transition zone near 400 km also varies regionally, by about 30-40 km. These differences imply variations of 250 °C in the temperature or 6 % in the iron content of the mantle, if the phase transformation of olivine to the spinel structure is assumed responsible. The structural variations at this depth are not correlated with those at shallower depths, and follow no obvious simple pattern.

The computer programs used in this study are described in the Appendices. The program TTINV (Appendix IV) fits spherically symmetric earth models to observed travel time data. The method, described in Appendix III, resembles conventional least-square fitting, using partial derivatives of the travel time with respect to the model parameters to perturb an initial model. The usual ill-conditioned nature of least-squares techniques is avoided by a technique which minimizes both the travel time residuals and the model perturbations.

Spherically symmetric earth models, however, have been found inadequate to explain most of the observed travel times in this study. TVT4, a computer program that performs ray theory calculations for a laterally inhomogeneous earth model, is described in Appendix II. Appendix I gives a derivation of seismic ray theory for an arbitrarily inhomogeneous earth model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eu3+-doped zinc aluminate (ZnAl2O4) nanorods with a spinel structure were successfully synthesized via an annealing transformation of layered precursors obtained by a homogeneous coprecipitation method combined with surfactant assembly. These spinel nanorods, which consist of much finer nanofibres together with large quantities of irregular mesopores and which possess a large surface area of 93.2 m(2) g(-1) and a relatively narrow pore size distribution in the range of 6 - 20 nm, are an ideal optical host for Eu3+ luminescent centres. In this nanostructure, rather disordered surroundings induce the typical electric-dipole emission (D-5(0) --> F-7(2)) of Eu3+ to predominate and broaden.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Manganese-gallium oxide nanowires were synthesized via in situ Mn doping during nanowire growth using a vapor phase evaporation method. The microstructure and composition of the products were characterized via transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The field and temperature dependence of the magnetization reveal the obvious hysteresis loop and large magnitude of Curie-Weiss temperature. The photoluminescence of the manganese-gallium oxide nanowires were studied in a temperature range between 10 and 300 K. A broad green emission band was observed which is attributed to the T-4(1)-(6)A(1) transition in Mn2+ (3d(5)) ions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The BaMA(10)O(17) (M = Be, Mg, Ca, Zn, Cd, Mn, Co, Li) system has been synthesized by solid state method and characterized by XRD. The results show that when M is Mg, Zn, Mn, Co, Li, there exists the structure of beta-Al2O3 for BaMAl10O17 system, and when M indicates Cd, beta-Al2O3 structure is formed accompanying alpha-Al2O3 phase, and when M represents Be and Ca, beta-Al2O3 structure cannot be formed. This demonstrates that the condition forming beta-Al2O3 structure compounds for the system BaMAl10O17 is 0.05nm < R-M < 0.09nm (R-M represents the radius of M). The thought that if a M ion can form a stable spinel structure there exsits a corresponding magnetoplumbite and beta-alumina structure is proposed for BaMAl10O17 system according to the experimental results. When M is Li, Be, Zn, Eu2+ activator produces an emission of nearly 450 nm with half height width about 50 nm, when M is Mn, there are simultaneously the emissions of Eu2+ and Mn2+ and the excitation energy of Eu2+ can transfer to Mn2+ in the host, when M is Cd, Eu2+ displays a double-emission band, which can be explained by the Jahn-Teller's effect. It is possible for the system BaMAl10O17 with M being Li, Be, Zn to become blue-emitting component in three colour lamp through further study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Zn7Sb2O12 is known to adopt an inverse spinel crystal structure, in which Zn2+ occupies the eight tetrahedral positions and Sb5+ and Zn2+ randomly occupy the 16 octahedral positions. Samples of Zn7-xNixSb2O12 (X = 0, 1, 2, 3, and 4) were synthesized using a modified polymeric precursor method, known as the Pechini method. The crystal structure of the powders was characterized by Rietveld refinement with X-ray diffraction data. The results show that for X = 0, 1, and 2 Ni substitutes for Zn2+ in the octahedral sites, and that for X = 3 and 4 it is assumed that Ni2+ replaces Zn2+ ions in both the octahedral and tetrahedral positions. It is also observed for x = 3 and 4 the formation of two spinel phases. (C) 2003 International Centre for Diffraction Data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-resolution transmission electron microscopy (HRTEM) was used to study the olivine to spinel transformation. HRTEM structure images of Mg2GeO4 olivine deformed under a pressure of 6 GPa at 600 degreesC clearly show that a shear mechanism dominates the transformation. The transformation is not a nucleation and growth mechanism. It also differs in certain crucial aspects from the type of martensitic transformation proposed before. During the transformation, it is a shear movement that brings the oxygen anions to their positions in the spinel structure. An edge dislocation following each shear then puts the cations in their spinel sites. The Burgers' vector of each dislocation is perpendicular to the anion shear direction. (C) 2004 American Institute of Physics.