57 resultados para Spikelet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In future climates, greater heat tolerance at anthesis will be required in rice. The effect of high temperature at anthesis on spikelet fertility was studied on IR64 (lowland indica) and Azucena (upland Japonica) at 29.6 degrees C (control), 33.7 degrees C, and 36.2 degrees C tissue temperatures. The objectives of the study were to: (i) determine the effect of temperature on flowering pattern; (ii) examine the effect of time of day of spikelet anthesis relative to a high temperature episode on spikelet fertility; and (iii) study the interactions between duration of exposure and temperature on spikelet fertility. Plants were grown at 30/24 degrees C day/night temperature in a greenhouse and transferred to growth cabinets for the temperature treatments. Individual spikelets were marked with paint to relate fertility to the time of exposure to different temperatures and durations. In both genotypes the pattern of flowering was similar, and peak anthesis occurred between 10.30 h and 11.30 h at 29.2 degrees C, and about 45 min earlier at 36.2 degrees C. In IR64, high temperature increased the number of spikelets reaching anthesis, whereas in Azucena numbers were reduced. In both genotypes :511 h exposure to >= 33.7 degrees C at anthesis caused sterility. In IR64, there was no interaction between temperature and duration of exposure, and spikelet fertility was reduced by about 7% per degrees C > 29.6 degrees C. In Azucena there was a significant interaction and spikelet fertility was reduced by 2.4% degrees Cd-1 above a threshold of 33 degrees C. Marking individual spikelets is an effective method to phenotype genotypes and lines for heat tolerance that removes any apparent tolerance due to temporal escape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme temperature during reproductive development affects rice (Oryza sativa L.) yield and seed quality. A controlled-environment reciprocal-transfer experiment was designed where plants from two japonica cultivars were grown at 28/24 ⁰C and moved to 18/14 ⁰C and vice versa, or from 28/24 to 38/34 ⁰C and vice versa, for 7-d periods to determine the respective temporal pattern of sensitivity of spikelet fertility, yield, and seed viability to each temperature extreme. Spikelet fertility and seed yield per panicle were severely reduced by extreme temperature in the 14 d period prior to anthesis; and both cultivars were affected at 38/34 ⁰C while only cv. Gleva was affected at 18/14 ºC. The damage was greater the earlier the panicles were stressed within this period. Later-exserted panicles compensated only partly for yield loss. Seed viability was significantly reduced by 7-d exposure to 38/34 ⁰C or 18/14 ⁰C at 1 to 7 and 1 to 14 d after anthesis, respectively, in cv. Gleva. Cultivar Taipei 309 was not affected by 7 d exposure at 18/14 ⁰C; and no consistent temporal pattern of sensitivity was evident at 38/34 ⁰C. Hence, brief exposure to low or high temperature was most damaging to spikelet fertility and yield 14 to 7 d before anthesis, coinciding with microsporogenesis; and it was almost as damaging around anthesis. Seed viability was most vulnerable to low or high temperature in the 7 or 14 d after anthesis, when histodifferentiation occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is increasing night temperature (NT) more than day temperature (DT) in rice-growing areas. Effects of combinations of NT (24-35°C) from microsporogenesis to anthesis at one or more DT (30 or 35°C) at anthesis on rice spikelet fertility, temperature within spikelets, flowering pattern, grain weight per panicle, amylose content and gel consistency were investigated in contrasting rice cultivars under controlled environments. Cultivars differed in spikelet fertility response to high NT, with higher fertility associated with cooler spikelets (P < 0.01). Flowering dynamics were altered by high NT and a novel high temperature tolerance complementary mechanism, shorter flower open duration in cv. N22, was identified. High NT reduced spikelet fertility, grain weight per panicle, amylose content and gel consistency, whereas high DT reduced only gel consistency. Night temperature >27°C was estimated to reduce grain weight. Generally, high NT was more damaging to grain weight and selected grain quality traits than high DT, with little or no interaction between them. The critical tolerance and escape traits identified, i.e. spikelet cooling, relatively high spikelet fertility, earlier start and peak time of anthesis and shorter spikelet anthesis duration can aid plant breeding programs targeting resilience in warmer climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased grain yield in response to high rates of application of nitrogen (N) fertiliser is often limited by increased spikelet sterility, particularly under low temperature conditions in the New South Wales ( NSW) rice industry. In 3 field experiments, different N rates were applied for different sowing dates to investigate the interaction between N rate and temperature during microspore development on spikelet sterility and grain yield. In one experiment the effect of water depth on spikelet sterility was also investigated. Engorged pollen production, spikelet sterility, and yield and its components were recorded. Application of N affected a few different processes that lead into spikelet sterility. Application of N at both pre-flood (PF) and panicle initiation ( PI) significantly reduced the number of engorged pollen grains per anther, which was negatively correlated with spikelet sterility. Application of N and low temperature during microspore development with the absence of deep water also decreased pollen engorgement efficiency ( the percentage of pollen grains that were engorged). Application of N further increased spikelet density, which, in turn, increased both spikelet sterility and grain yield. The combined effect of spikelet density and low temperature during microspore development explained the 44% of variation in the number of engorged pollen grains per anther. Grain yield was decreased by low temperature during microspore development in the shallow water when N was applied. Spikelet sterility as a result of late sowing was strongly correlated with minimum temperature during flowering. It is concluded that N application reduced pollen number per anther as a result of increased spikelet density, and this made the spikelets more susceptible to low temperature, causing increased spikelet sterility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased rates of nitrogen fertilizer application lead to increased spikelet sterility. A field experiment was conducted to investigate the effects on engorged pollen production and spikelet sterility, of nitrogen and assimilate availability during microspore development, in two rice cultivars (Doongara and Amaroo) grown under two different water depths. Despite the temperature not being low enough during microspore development to cause spikelet sterility, the number of engorged pollen grains was lower in cv. Doongara than in cv. Amaroo. Nitrogen application decreased the number of engorged pollen grains per anther through increased spikelet density. Nitrogen application increased spikelet sterility as a result of increased panicle density showing pronounced indirect effect of N on spikelet sterility. Engorged pollen number was also closely related (r = -0.636*) to the nitrogen content of the leaf blade, indicating a direct negative effect of plant N status on engorged pollen production. The results suggest that the intrinsic pollen producing ability is the key element in the difference in cold tolerance between the two cultivars, particularly under high N rates. Opening the canopy for increased solar radiation interception by the treated plants increased the level of engorged pollen, indicating the importance of immediate assimilate availability for engorged pollen production. Shading reduced crop growth rate, but did not effect engorged pollen production. There was no effect of variation in assimilates production on spikelet sterility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A typical barley (Hordeum vulgare) floret consists of reproductive organs three stamens and a pistil, and non-reproductive organs-lodicules and two floral bracts, abaxial called 'lemma' and adaxial 'palea'. The floret is subtended by two additional bracts called outer or empty glumes. Together these organs form the basic structural unit of the grass inflorescence, a spikelet. There are commonly three spikelets at each rachis (floral stem of the barley spike) node, one central and two lateral spikelets. Rare naturally occurring or induced phenotypic variants that contain a third bract subtending the central spikelets have been described in barley. The gene responsible for this phenotype was called the THIRD OUTER GLUME1 (Trd1). The Trd1 mutants fail to suppress bract growth and as a result produce leaf-like structures that subtend each rachis node in the basal portion of the spike. Also, floral development at the collar is not always suppressed. In rice and maize, recessive mutations in NECK LEAF1 (Nl1) and TASSEL SHEATH1 (Tsh1) genes, respectively, have been shown to be responsible for orthologous phenotypes. Fine mapping of the trd1 phenotype in an F-3 recombinant population enabled us to position on the long arm of chromosome 1H to a 10 cM region. We anchored this to a conserved syntenic region on rice chromosome Os05 and selected a set of candidate genes for validation by resequencing PCR amplicons from a series of independent mutant alleles. This analysis revealed that a GATA transcription factor, recently proposed to be Trd1, contained mutations in 10 out of 14 independent trd1 mutant alleles that would generate non-functional TRD1 proteins. Together with genetic linkage data, we confirm the identity of Trd1 as the GATA transcription factor ortholog of rice Nl1 and maize Tsh1 genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10 degrees C and 11 h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10 degrees C or 28/14 degrees C with 11 h or 16 h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed C-13 and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14 degrees C and 16 h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obverse: Silver 10 Lirot coin, a stylized spikelet of corn. Reverse: Schematic plough.