999 resultados para Spectrum decomposition
Resumo:
The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a series researches are conducted on fracture reservoir prediction technology in general,and it especially focus on some difficult points. The technological series which integrated amplitude preserved data processing、interpretation and its comprehensive application research as a whole were developed and this new method can be applied to the other similar oilfield exploration and development. The contents and results in this paper are listed as follows: 1. An overview was given on the status and development of fracture reservoir estimation technique, compare and analyze those geophysical prediction methods. This will be very helpful to the similar reservoir researches. 2. Analyze and conclude the characters of geologies and well logging response of burial hills fracture reservoir, those conclusions are used to steer the geophysical research and get satisfying results. 3. Forward modeling anisotropy seismic response of fracture reservoir. Quantitatively describe the azimuthal amplitude variation. Amplitude ellipse at each incidence angle is used to identify the fracture orientation. 4. Numerical simulation of structure stress based on finite difference method is carried out. Quantitatively describe and analyze the direction and intensity of fracture. 5. Conventional attributes extraction of amplitude preserved seismic data、attributes with different azimuthal angle and different offset are used to determine the relationship between the results and fracture distribution. 6. With spectrum decomposition method based on wavelet transform, the author disclose the reservoir distribution in space. It is a powerful tool to display its anisotropy. 7. Integrated seismic wave impendence、elastic impendence、spectrum decomposition、attribute extraction、fracture analysis result as a whole to identify and evaluate the fracture reservoir. An optimum workflow is constructed. It is used to practical oil&gas production and good results are obtained. This can indicate the wide foreground of this technique series.
Resumo:
Seismic signal is a typical non-stationary signal, whose frequency is continuously changing with time and is determined by the bandwidth of seismic source and the absorption characteristic of the media underground. The most interesting target of seismic signal’s processing and explaining is to know about the local frequency’s abrupt changing with the time, since this kind of abrupt changing is indicating the changing of the physical attributes of the media underground. As to the seismic signal’s instantaneous attributes taken from time-frequency domain, the key target is to search a effective, non-negative and fast algorithm time-frequency distribution, and transform the seismic signal into this time-frequency domain to get its instantaneous power spectrum density, and then use the process of weighted adding and average etc. to get the instantaneous attributes of seismic signal. Time-frequency analysis as a powerful tool to deal with time variant non-stationary signal is becoming a hot researching spot of modern signal processing, and also is an important method to make seismic signal’s attributes analysis. This kind of method provides joint distribution message about time domain and frequency domain, and it clearly plots the correlation of signal’s frequency changing with the time. The spectrum decomposition technique makes seismic signal’s resolving rate reach its theoretical level, and by the method of all frequency scanning and imaging the three dimensional seismic data in frequency domain, it improves and promotes the resolving abilities of seismic signal vs. geological abnormal objects. Matching pursuits method is an important way to realize signal’s self-adaptive decomposition. Its main thought is that any signal can be expressed by a series of time-frequency atoms’ linear composition. By decomposition the signal within an over completed library, the time-frequency atoms which stand for the signal itself are selected neatly and self-adaptively according to the signal’s characteristics. This method has excellent sparse decomposition characteristics, and is widely used in signal de-noising, signal coding and pattern recognizing processing and is also adaptive to seismic signal’s decomposition and attributes analysis. This paper takes matching pursuits method as the key research object. As introducing the principle and implementation techniques of matching pursuits method systematically, it researches deeply the pivotal problems of atom type’s selection, the atom dictionary’s discrete, and the most matching atom’s searching algorithm, and at the same time, applying this matching pursuits method into seismic signal’s processing by picking-up correlative instantaneous messages from time-frequency analysis and spectrum decomposition to the seismic signal. Based on the research of the theory and its correlative model examination of the adaptively signal decomposition with matching pursuit method, this paper proposes a fast optimal matching time-frequency atom’s searching algorithm aimed at seismic signal’s decomposition by frequency-dominated pursuit method and this makes the MP method pertinence to seismic signal’s processing. Upon the research of optimal Gabor atom’s fast searching and matching algorithm, this paper proposes global optimal searching method using Simulated Annealing Algorithm, Genetic Algorithm and composed Simulated Annealing and Genetic Algorithm, so as to provide another way to implement fast matching pursuit method. At the same time, aimed at the characteristics of seismic signal, this paper proposes a fast matching atom’s searching algorithm by means of designating the max energy points of complex seismic signal, searching for the most optimal atom in the neighbor area of these points according to its instantaneous frequency and instantaneous phase, and this promotes the calculating efficiency of seismic signal’s matching pursuit algorithm. According to these methods proposed above, this paper implements them by programmed calculation, compares them with some open algorithm and proves this paper’s conclusions. It also testifies the active results of various methods by the processing of actual signals. The problems need to be solved further and the aftertime researching targets are as follows: continuously seeking for more efficient fast matching pursuit algorithm and expanding its application range, and also study the actual usage of matching pursuit method.
Resumo:
With the develop ment of oil and gas exploration, the conventional struc ture exploration era has gradually been substituted by the concealed reser voir exploration technology. Hill poll becomes one of the most important areas in the future exploration. This paper is based on the three-dimensional seismic interpretation of Sudeerte structure. In terms of the overall character istics of Sudeerte structure, we use the coherent cube and the time slice to interpret the fault in plane. For the interpretation,we especially used the well to adjust the interpretation results. The results of seismic attribution analysis, spectrum decomposition and post- stack seismic inversion forecast that hill pools reservoir are dist ributed in several bands along the north-northeast to northeast-east. Xing'anling Group shows that the potential reser voirs are mainly distributed along Bei 14 –Bei 40 and De (99-212) - Bei (16-1) and Budate Group distributed along Bei 14 –Bei 40 in northwestern direction and De (99-212) - Bei (16-1) in north eastern direction. At the same time, by analyzing the structure and the reservoir, and combining with other data, three models are built. The characteristics of reservoirs dist ribution are concl uded,and potent ional favorable exploration dire ctions are predi cted.
Resumo:
We present computer simulation study of two-dimensional infrared spectroscopy (2D-IR) of water confined in reverse micelles (RMs) of various sizes. The present study is motivated by the need to understand the altered dynamics of confined water by performing layerwise decomposition of water, with an aim to quantify the relative contributions of different layers water molecules to the calculated 2D-IR spectrum. The 0-1 transition spectra clearly show substantial elongation, due to in-homogeneous broadening and incomplete spectral diffusion, along the diagonal in the surface water layer of different sized RMs. Fitting of the frequency fluctuation correlation functions reveal that the motion of the surface water molecules is sub-diffusive and indicate the constrained nature of their dynamics. This is further supported by two peak nature of the angular analogue of van Hove correlation function. With increasing system size, the water molecules become more diffusive in nature and spectral diffusion almost completes in the central layer of the larger size RMs. Comparisons between experiments and simulations establish the correspondence between the spectral decomposition available in experiments with the spatial decomposition available in simulations. Simulations also allow a quantitative exploration of the relative role of water, sodium ions, and sulfonate head groups in vibrational dephasing. Interestingly, the negative cross correlation between force on oxygen and hydrogen of O-H bond in bulk water significantly decreases in the surface layer of each RM. This negative cross correlation gradually increases in the central water pool with increasing RMs size and this is found to be partly responsible for the faster relaxation rate of water in the central pool. (C) 2013 AIP Publishing LLC.
Resumo:
In this thesis, a new technique has been developed for determining the composition of a collection of loads including induction motors. The application would be to provide a representation of the dynamic electrical load of Brisbane so that the ability of the power system to survive a given fault can be predicted. Most of the work on load modelling to date has been on post disturbance analysis, not on continuous on-line models for loads. The post disturbance methods are unsuitable for load modelling where the aim is to determine the control action or a safety margin for a specific disturbance. This thesis is based on on-line load models. Dr. Tania Parveen considers 10 induction motors with different power ratings, inertia and torque damping constants to validate the approach, and their composite models are developed with different percentage contributions for each motor. This thesis also shows how measurements of a composite load respond to normal power system variations and this information can be used to continuously decompose the load continuously and to characterize regarding the load into different sizes and amounts of motor loads.
Resumo:
The thermal decomposition of methylammonium perchlorate (MAP) has been studied under isothermal and non-isothermal conditions. Differential thermal analysis of MAP showed, in addition to the exotherm due to decomposition, another exotherm at 408° which was observed for the first time. Chemical analysis and the infrared spectrum of the residue left behind after the decomposition proved it to contain NH4ClO4. The results have been explained on the basis of a methyl group transfer in addition to proton transfer in the decomposition process.
Resumo:
A new method for decomposition of compo,.~itsei gnals is presented. It is shown that high freyuency portion of composite signal spectrum possesses information on echo structure. The proposed technique does not assume the shape of basic wavelet and does not place any restrictions on the amplitudes and arrival times of echoes inm the composite signal. In the absence of noise any desirrd resolution can he obtained The effect of sampling rate and jFequency window function on echo resolutio.~ are di.wussed. Voiced speech segment is considered as an example of conzpxite sigrnl to demonstrate the application of the decomposition technique.
Resumo:
We present a complete solution to the problem of coherent-mode decomposition of the most general anisotropic Gaussian Schell-model (AGSM) beams, which constitute a ten-parameter family. Our approach is based on symmetry considerations. Concepts and techniques familiar from the context of quantum mechanics in the two-dimensional plane are used to exploit the Sp(4, R) dynamical symmetry underlying the AGSM problem. We take advantage of the fact that the symplectic group of first-order optical system acts unitarily through the metaplectic operators on the Hilbert space of wave amplitudes over the transverse plane, and, using the Iwasawa decomposition for the metaplectic operator and the classic theorem of Williamson on the normal forms of positive definite symmetric matrices under linear canonical transformations, we demonstrate the unitary equivalence of the AGSM problem to a separable problem earlier studied by Li and Wolf [Opt. Lett. 7, 256 (1982)] and Gori and Guattari [Opt. Commun. 48, 7 (1983)]. This conn ction enables one to write down, almost by inspection, the coherent-mode decomposition of the general AGSM beam. A universal feature of the eigenvalue spectrum of the AGSM family is noted.
Resumo:
Gadolinium iron garnet was milled in a high energy ball mill to study its magnetic properties in the nanocrystalline regime. XRD reveals the decomposition of the garnet phase into Gd-orthoferrite and Gd2O3 on milling. The variation of saturation magnetization and coercivity with milling is attributed to a possible shift in the compensation temperature on grain size reduction and an increase in the orthoferrite content. The Mössbauer spectrum at 16 K is characteristic of the magnetically ordered state corresponding to GdIG, GdFeO3 and α-Fe2O3 whereas at room temperature it is a superparamagnetic doublet.
Resumo:
Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.
Resumo:
Singular value decomposition - least squares (SVDLS), a new method for processing the multiple spectra with multiple wavelengths and multiple components in thin layer spectroelectrochemistry has been developed. The CD spectra of three components, norepinephrine reduced form of norepinephrinechrome and norepinephrinequinone, and their fraction distributions with applied potential were obtained in three redox processes of norepinephrine from 30 experimental CD spectra, which well explains electrochemical mechanism of norepinephrine as well as the changes in the CD spectrum during the electrochemical processes.
Resumo:
A series of LnSrNiO(4)(A(2)BO(4), Ln = La, Pr, Nd, Sm, Gd) mixed oxides with K2NiF4 structure, in which A-site(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physico-chemical properties including crystal structure, defect structure, IR spectrum, valence state of H-site ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 degrees C the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at A-site on catalytic behavior for NO decomposition was elucidated.
Resumo:
Let A be a self-adjoint operator on a Hilbert space. It is well known that A admits a unique decomposition into a direct sum of three self-adjoint operators A(p), A(ac) and A(sc) such that there exists an orthonormal basis of eigenvectors for the operator A(p) the operator A(ac) has purely absolutely continuous spectrum and the operator A(sc) has purely singular continuous spectrum. We show the existence of a natural further decomposition of the singular continuous component A c into a direct sum of two self-adjoint operators A(sc)(D) and A(sc)(ND). The corresponding subspaces and spectra are called decaying and purely non-decaying singular subspaces and spectra. Similar decompositions are also shown for unitary operators and for general normal operators.