944 resultados para Spectral Broadening
Resumo:
We report the fabrication and characterization of the first guiding chalcogenide As(2)S(3) microstructured optical fibers (MOFs) with a suspended core. At 1.55 mu m, the measured losses are approximately 0.7 dB/m or 0.35 dB/m according to the MOF core size. The fibers have been designed to present a zero dispersion wavelength (ZDW) around 2 mu m. By pumping the fibers at 1.55 mu m, strong spectral broadenings are obtained in both 1.8 and 45-m-long fibers by using a picosecond fiber laser. (C) 2010 Optical Society of America
Resumo:
We overview the recent development in applications of spectral broadening and supercontinuum generation in the field of optical communications. Special attention is dedicated to recent results obtained in our research groups. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Raman fibre lasers and converters using the stimulated Raman scattering (SRS) in optical fibre waveguide are attractive for many applications ranging from telecommunications to bio-medical applications [1]. Multiple-wavelength Raman laser sources emitting at two and more wavelengths have been proposed to increase amplification spectrum of Raman fibre amplifiers and to improve noise characteristics [2,3]. Typically, a single fibre waveguide is used in such devices while multi-wavelength generation is achieved by employing corresponding number of fibre Bragg grating (FBG) pairs forming laser resonator. This approach, being rather practical, however, might not provide a good level of cross coherence between radiation generated at different wavelengths due to difference in FBGs and random phase fluctuations between the two wavelengths. In this work we examine a scheme of two-wavelength Raman fibre laser with high-Q cavity based on spectral intracavity broadening [3]. We demonstrate feasibility of such configuration and perform numerical analysis clarifying laser operation using an amplitude propagation equation model that accounts for all key physical effects in nonlinear fibre: dispersion, Kerr nonlinearity, Raman gain, depletion of the Raman pump wave and fibre losses. The key idea behind this scheme is to take advantage of the spectral broadening that occurs in optical fibre at high powers. The effect of spectral broadening leads to effective decrease of the FBGs reflectivity and enables generation of two waves in one-stage Raman laser. The output spectrum in the considered high-Q cavity scheme corresponds to two peaks with 0.2 - 1 nm distance between them. © 2011 IEEE.
Resumo:
We experimentally demonstrate the generation of an extreme-ultraviolet (XUV) supercontinuum in argon with a two-color laser field consisting of an intense 7 fs pulse at 800 nm and a relatively weak 37 fs pulse at 400 nm. By controlling the relative time delay between the two laser pulses, we observe enhanced high-order harmonic generation as well as spectral broadening of the supercontinuum. A method to produce isolated attosecond pulses with variable width and intensity is proposed. (C) 2008 Optical Society of America.
Resumo:
Using a cavity mode model we study numerically the impact of bandwidth and spectral response profile of fibre Bragg gratings on four-wave-mixing-induced spectral broadening of radiation generated in 6 km and 22 km SMF-based Raman fibre lasers.
Resumo:
The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and numerical simulations in 1D, 2D and 3D geometries taking into account propagation effects of both pump and THz fields. We show that produced THz signals interact with free electron trajectories and thus significantly influence further THz generation upon propagation, i.e., make the process inherently nonlocal. This self-action contributes to the observed strong spectral broadening of the generated THz field. Weshow that diffraction of the generated THz radiation is the limiting factor for the co-propagating low frequency amplitudes and thus for the self-action mechanism in 2D and 3D geometries.
Resumo:
The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and numerical simulations in 1D, 2D and 3D geometries taking into account propagation effects of both pump and THz fields. We show that produced THz signals interact with free electron trajectories and thus significantly influence further THz generation upon propagation, i.e., make the process inherently nonlocal. This self-action contributes to the observed strong spectral broadening of the generated THz field. We show that diffraction of the generated THz radiation is the limiting factor for the co-propagating low frequency amplitudes and thus for the self-action mechanism in 2D and 3D geometries.
Resumo:
A probe, 9-(anthrylmethyl)trimethylammonium chloride, 1, was prepared. 1 binds to calf-thymus DNA or Escherichia coli genomic DNA with high affinity, as evidenced from the absorption titration. Strong hypochromism, spectral broadening and red-shifts in the absorption spectra were observed. Half-reciprocal plot constructed from this experiment gave binding constant of 5±0.5×104 M−1 in base molarity. We employed this anthryl probe-DNA complex for studying the effects of addition of various surfactant to DNA. Surfactants of different charge types and chain lengths were used in this study and the effects of surfactant addition to such probe-DNA complex were compared with that of small organic cations or salts. Addition of either salts or cationic surfactants led to structural changes in DNA and under these conditions, the probe from the DNA-bound complex appeared to get released. However, the cationic surfactants could induce such release of the probe from the probe-DNA complex at a much lower concentration than that of the small organic cations or salts. In contrast the anionic surfactants failed to promote any destabilization of such probe-DNA complexes. The effects of additives on the probe-DNA complexes were also examined by using a different technique (fluorescence spectroscopy) using a different probe ethidium bromide. The association complexes formed between the cationic surfactants and the plasmid DNA pTZ19R, were further examined under agarose gel electrophoresis and could not be visualized by ethidium bromide staining presumably due to cationic surfactant-induced condensation of DNA. Most of the DNA from such association complexes can be recovered by extraction of surfactants with phenol-chloroform. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA melting temperatures by a few °C and at high [surfactant], the corresponding melting profiles got broadened.
Resumo:
The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.
Resumo:
A novel technique for high-power extracavity pulse compression with a nonlinear solid material is demonstrated. Before spectral broadening by self-phase modulation in the solid material, a short filament generated in argon is used as a spatial filter, which works for a uniform spectrum broadening over the spatial profile. Compensated by chirped mirrors, a 15-fs pulse is generated from a 32-fs input laser pulse. A total transmission larger than 80% after the solid material is achieved.
Resumo:
The authors present numerical simulations of ultrashort pulse generation by a technique of linear spectral broadening in phase modulators and compression in dispersion compensating fibre, followed by a further stage of soliton compression in dispersion shifted fibre. This laser system is predicted to generate pulses of 140 fs duration with a peak power of 1.5 kW over a wide, user selectable repetition rate range while maintaining consistent characteristics of stability and pulse quality. The use of fibre compressors and commercially available modulators is expected to make the system setup compact and cost-effective. © The Institution of Engineering and Technology 2014.
Resumo:
Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear indexguiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources. © 2002 Optical Society of America.
Resumo:
The generation of a spatially single-mode white-light supercontinuum has been observed in a photonic crystal fiber pumped with 60-ps pulses of subkilowatt peak power. The spectral broadening is identified as being due to the combined action of stimulated Raman scattering and parametric four-wave-mixing generation, with a negligible contribution from the self-phase modulation of the pump pulses. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate that ultrafast femtosecond pulses are not needed for efficient supercontinuum generation in photonic crystal fibers. © 2001 Optical Society of America.
Resumo:
In this work we report our achievements in the elaboration and optical characterizations of low-losses suspended core optical fibers elaborated from As2S3 glass. For preforms elaboration, alternatively to other processes like the stack and draw or extrusion, we use a process based on mechanical drilling. The drawing of these drilled performs into fibers allows reaching a suspended core geometry, in which a 2 μm diameter core is linked to the fiber clad region by three supporting struts. The different fibers that have been drawn show losses close to 0.9 dB/m at 1.55 μm. The suspended core waveguide geometry has also an efficient influence on the chromatic dispersion and allows its management. Indeed, the zero dispersion wavelength, which is around 5 μm in the bulk glass, is calculated to be shifted towards around 2μm in our suspended core fibers. In order to qualify their nonlinearity we have pumped them at 1.995 μm with the help of a fibered ns source. We have observed a strong non linear response with evidence of spontaneous Raman scattering and strong spectral broadening. © 2011 SPIE.