946 resultados para Speckle tracking liver motion correction contrast-enhanced ultrasound


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'ecografia con mezzo di contrasto è una tecnica non invasiva che consente di visualizzare la micro e la macrocircolazione grazie all'utilizzo di microbolle gassose che si distribuiscono in tutto il sistema cardiovascolare. Le informazioni emodinamiche e perfusionali ricavabili dalle immagini eco con contrasto possono essere utilizzate per costruire un modello a grafo dell'albero vascolare epatico. L'analisi della connettività del grafo rappresenta una strategia molto promettente che potrebbe consentire di sostituire la misurazione del gradiente pressorio venoso del fegato, che richiede cateterismo, determinando un notevole miglioramento nella gestione dei pazienti cirrotici. La presente tesi si occupa della correzione dei movimenti del fegato, che deve essere realizzata prima di costruire il grafo per garantire un'accuratezza adeguata. Per correggere i movimenti è proposta una tecnica di Speckle tracking, testata sia in vitro su sequenze eco sintetiche, sia in vivo su sequenze reali fornite dal Policlinico Sant'Orsola.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary aim of this thesis was the evaluation of the perfusion of normal organs in cats using contrast-enhanced ultrasound (CEUS), to serve as a reference for later clinical studies. Little is known of the use of CEUS in cats, especially regarding its safety and the effects of anesthesia on the procedure, thus, secondary aims here were to validate the quantitative analyzing method, to investigate the biological effects of CEUS on feline kidneys, and to assess the effect of anesthesia on splenic perfusion in cats undergoing CEUS. -- The studies were conducted on healthy, young, purpose-bred cats. CEUS of the liver, left kidney, spleen, pancreas, small intestine, and mesenteric lymph nodes was performed to characterize the normal perfusion of these organs on ten anesthetized, male cats. To validate the quantification method, the effects of placement and size of the region of interest (ROI) on perfusion parameters were investigated using CEUS: Three separate sets of ROIs were placed in the kidney cortex, varying in location, size, or depth. The biological effects of CEUS on feline kidneys were estimated by measuring urinary enzymatic activities, analyzing urinary specific gravity, pH, protein, creatinine, albumin, and sediment, and measuring plasma urea and creatinine concentrations before and after CEUS. Finally, the impact of anesthesia on contrast enhancement of the spleen was investigated by imaging cats with CEUS first awake and later under anesthesia on separate days. -- Typical perfusion patterns were found for each of the studied organs. The liver had a gradual and more heterogeneous perfusion pattern due to its dual blood flow and close proximity to the diaphragm. An obvious and statistically significant difference emerged in the perfusion between the kidney cortex and medulla. Enhancement in the spleen was very heterogeneous at the beginning of imaging, indicating focal dissimilarities in perfusion. No significant differences emerged in the perfusion parameters between the pancreas, small intestine, and mesenteric lymph nodes. -- The ROI placement and size were found to have an influence on the quantitative measurements of CEUS. Increasing the depth or the size of the ROI decreased the peak intensity value significantly, suggesting that where and how the ROI is placed does matter in quantitative analyses. --- A significant increase occurred in the urinary N-acetyl-β-D-glucosaminidase (NAG) to creatinine ratio after CEUS. No changes were noted in the serum biochemistry profile after CEUS, with the exception of a small decrease in blood urea concentration. The magnitude of the rise in the NAG/creatinine ratio was, however, less than the circadian variation reported earlier in healthy cats. Thus, the changes observed in the laboratory values after CEUS of the left kidney did not indicate any detrimental effects in kidneys. Heterogeneity of the spleen was observed to be less and time of first contrast appearance earlier in nonanesthetized cats than in anesthetized ones, suggesting that anesthesia increases heterogeneity of the feline spleen in CEUS. ---- In conclusion, the results suggest that CEUS can be used also in feline veterinary patients as an additional diagnostics aid. The perfusion patterns found in the imaged organs were typical and similar to those seen earlier in other species, with the exception of the heterogeneous perfusion pattern in the cat spleen. Differences in the perfusion between organs corresponded with physiology. Based on the results, estimation of focal perfusion defects of the spleen in cats should be performed with caution and after the disappearance of the initial heterogeneity, especially in anesthetized or sedated cats. Finally, these results indicate that CEUS can be used safely to analyze kidney perfusion also in cats. Future clinical studies are needed to evaluate the full potential of CEUS in feline medicine as a tool for diagnosing lesions in various organ systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal cancer represents accounts for approximately 3% of all adult malignancies with a rising incidence. Incidental diagnosis is mostly based upon ultrasound (US). US and Computed tomography (CT) are the standard imaging modalities for detecting renal cell cancer (RCC). Differentiation between malignant and benign renal tumors is of utmost importance. Contrast enhanced ultrasound (CUS) seems to be a promising new diagnostic option for diagnosis and preoperative treatment planning for patients with renal cancer. It is an additional examination to baseline ultrasound and CT. We report a case of a 37-year-old woman with a papillary renal cell cancer in which CUS helped to differentiate dignity of the tumor. CUS is an additional examination to baseline ultrasound and CT. It is a less invasive technique than contrast enhanced CT and shows even slight tumor blood flow. In addition it may allow a more rapid diagnosis, because of its bedside availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasound contrast agents are gas-filled microbubbles that enhance visualization of cardiac structures, function and blood flow during contrast-enhanced ultrasound (CEUS). An interesting cardiovascular application of CEUS is myocardial contrast echocardiography, which allows real-time myocardial perfusion imaging. The intraoperative use of this technically challenging imaging method is limited at present, although several studies have examined its clinical utility during cardiac surgery in the past. In the present review we provide general information on the basic principles of CEUS and discuss the methodology and technical aspects of myocardial perfusion imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To evaluate treatment response of hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with a new real-time imaging fusion technique of contrast-enhanced ultrasound (CEUS) with multi-slice detection computed tomography (CT) in comparison to conventional post-interventional follow-up. MATERIAL AND METHODS 40 patients with HCC (26 male, ages 46-81 years) were evaluated 24 hours after TACE using CEUS with ultrasound volume navigation and image fusion with CT compared to non-enhanced CT and follow-up contrast-enhanced CT after 6-8 weeks. Reduction of tumor vascularization to less than 25% was regarded as "successful" treatment, whereas reduction to levels >25% was considered as "partial" treatment response. Homogenous lipiodol retention was regarded as successful treatment in non-enhanced CT. RESULTS Post-interventional image fusion of CEUS with CT was feasible in all 40 patients. In 24 patients (24/40), post-interventional image fusion with CEUS revealed residual tumor vascularity, that was confirmed by contrast-enhanced CT 6-8 weeks later in 24/24 patients. In 16 patients (16/40), post-interventional image fusion with CEUS demonstrated successful treatment, but follow-up CT detected residual viable tumor (6/16). Non-enhanced CT did not identify any case of treatment failure. Image fusion with CEUS assessed treatment efficacy with a specificity of 100%, sensitivity of 80% and a positive predictive value of 1 (negative predictive value 0.63). CONCLUSIONS Image fusion of CEUS with CT allows a reliable, highly specific post-interventional evaluation of embolization response with good sensitivity without any further radiation exposure. It can detect residual viable tumor at early state, resulting in a close patient monitoring or re-therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the reliability of analysis of only 0-1min clips and 1-4min clips versus the entire clips in performing contrast-enhanced ultrasonography (CEUS) of focal liver lesions (FLLs). Methods: Contrast-enhanced ultrasonography (CEUS) examinations of 43 single FLLs were performed. All clips were analyzed in three ways, the entire clips, 0-1 min clips and 1-4 min clips, benign or malignant diagnosis and pathological diagnosis of each FLL were concluded by the three ways subsequently. Results: The results of correct diagnosis were assessed using Chi-square test. There was no difference with regard to benign or malignant diagnosis, between 0-1min clips and the entire clips, or between 1-4 min clips and the entire clips (p = 0.243 and p = 0.747, respectively). Moreover, no significant differences in pathological diagnosis existed between 0-1min clips and the entire clips, and 1- 4min clips versus entire clips (p=0.808 and p = 0.808, respectively). No significant differences existed among CEUS entire clip, 0-1min clip and 1-4min clip in identifying FLLs, and based on which the diagnosis of two different FLLs during CEUS with only one injection of contrast agent can be available. Conclusion: Only 0-1min clips or 1-4 min clips can be used to instead of the entre clip in performing CEUS of FLLs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Terlipressin improves renal function in some patients with type-1 hepato-renal syndrome (HRS). Renal contrast-enhanced ultrasound (CEUS), a novel imaging modality, may help to predict terlipressin responsiveness. OBJECTIVES: We used CEUS to estimate the effect of terlipressin on the renal cortical microcirculation in type-1 HRS. METHODS: We performed renal CEUS scans with destruction-replenishment sequences using Sonovue(®) (Bracco, Milano Italy) as a contrast agent at baseline and after the intravenous administration of 1 mg of terlipressin, in four patients with type-1 HRS. We analyzed video sequences offline using dedicated software. We derived a perfusion index (PI) at each time point for each patient. RESULTS: Patients 1 and 2 had severe presentation and were admitted to the intensive care unit. Both showed a marked increase in PI (+216% and + 567% of baseline) in response to terlipressin. Patients 3 and 4 had less severe presentations and had a decrease in PI (-53% and -20% of baseline) in response to terlipressin. Patients 1, 2, and 4, but not patient 3, responded to terlipressin therapy with a decrease in serum creatinine to <150 µmol/L. CONCLUSIONS: CEUS detected changes in renal cortical microcirculation in response to terlipressin and demonstrated heterogeneous microvascular responses to terlipressin. These initial proof-of-concept findings justify future investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. RESULTS An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. CONCLUSION CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: PTK787/ZK 222584 (PTK/ZK), an orally active inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, inhibits VEGF-mediated angiogenesis. The pharmacodynamic effects of PTK/ZK were evaluated by assessing changes in contrast-enhancement parameters of metastatic liver lesions using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with advanced colorectal cancer treated in two ongoing, dose-escalating phase I studies. Patients and Methods: Twenty-six patients had DCE-MRI performed at baseline, day 2, and at the end of each 28-day cycle. Doses of oral PTK/ZK ranged from 50 to 2000 mg once daily. Tumor permeability and vascularity were assessed by calculating the bidirectional transfer constant (Ki). The percentage of baseline Ki (% of baseline Ki) at each time point was compared with pharmacokinetic and clinical end points. Results: A significant negative correlation exists between the % of baseline Ki and increase in PTK/ZK oral dose and plasma levels (P = .01 for oral dose; P = .0001 for area under the plasma concentration curve at day 2). Patients with a best response of stable disease had a significantly greater reduction in Ki at both day 2 and at the end of cycle 1 compared with progressors (mean difference in % of baseline Ki, 47%, P = .004%; and 51%, P = .006; respectively). The difference in % of baseline Ki remained statistically significant after adjusting for baseline WHO performance status. Conclusion: These findings should help to define a biologically active dose of PTK/ZK. These results suggest that DCE-MRI may be a useful biomarker for defining the pharmacological response and dose of angiogenesis inhibitiors, such as PTK/ZK, for further clinical development. © 2003 by American Society of Clinical Oncology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time cardiac ultrasound allows monitoring the heart motion during intracardiac beating heart procedures. Our application assists atrial septal defect (ASD) closure techniques using real-time 3D ultrasound guidance. One major image processing challenge is the processing of information at high frame rate. We present an optimized block flow technique, which combines the probability-based velocity computation for an entire block with template matching. We propose adapted similarity constraints both from frame to frame, to conserve energy, and globally, to minimize errors. We show tracking results on eight in-vivo 4D datasets acquired from porcine beating-heart procedures. Computing velocity at the block level with an optimized scheme, our technique tracks ASD motion at 41 frames/s. We analyze the errors of motion estimation and retrieve the cardiac cycle in ungated images. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a two-level 3D human pose tracking method for a specific action captured by several cameras. The generation of pose estimates relies on fitting a 3D articulated model on a Visual Hull generated from the input images. First, an initial pose estimate is constrained by a low dimensional manifold learnt by Temporal Laplacian Eigenmaps. Then, an improved global pose is calculated by refining individual limb poses. The validation of our method uses a public standard dataset and demonstrates its accurate and computational efficiency. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are no studies investigating the effect of the contrast infusion on the sensitivity and specificity of the main Doppler criteria of renal artery stenosis (RAS). Our aim was to evaluate the accuracy of these Doppler criteria prior to and following the intravenous administration of perfluorocarbon exposed sonicated albumin (PESDA) in patients suspected of having RAS. Thirty consecutive hypertensive patients (13 males, mean age of 57 ± 10 years) suspected of having RAS by clinical clues, were submitted to ultrasonography (US) of renal arteries before and after enhancement using continuous infusion of PESDA. All patients underwent angiography, and haemodynamically significant RAS was considered when ≥50%. At angiography, it was detected RAS ≥50% in 18 patients, 5 with bilateral stenosis. After contrast, the examination time was slightly reduced by approximately 20%. In non-enhanced US the sensitivity was better when based on resistance index (82.9%) while the specificity was better when based on renal aortic ratio (89.2%). The predictive positive value was stable for all indexes (74.0%–88.0%) while negative predictive value was low (44%–51%). The specificity and positive predictive value based on renal aortic ratio increased after PESDA injection respectively, from 89 to 97.3% and from 88 to 95%. In hypertensives suspected to have RAS the sensitivity and specificity of Duplex US is dependent of the criterion evaluated. Enhancement with continuous infusion of PESDA improves only the specificity based on renal aortic ratio but do not modify the sensitivity of any index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suspected cause of clinical manifestations of patent foramen ovale (PFO) is a transient or a permanent right-to-left shunt (RLS). Contrast-enhanced transcranial Doppler ultrasound (c-TCD) is a reliable alternative to transesophageal echocardiography (TEE) for diagnosis of PFO, and enables also the detection of extracardiac RLS. The air-containing echo contrast agents are injected intravenously and do not pass the pulmonary circulation. In the presence of RLS, the contrast agents bypass the pulmonary circulation and cause microembolic signals (MES) in the basal cerebral arteries, which are detected by TCD. The two main echo contrast agents in use are agitated saline and D-galactose microparticle solutions. At least one middle cerebral artery (MCA) is insonated, and the ultrasound probe is fixed with a headframe. The monitored Doppler spectra are stored for offline analysis (e.g., videotape) of the time of occurrence and number of MES, which are used to assess the size and functional relevance of the RLS. The examination is more sensitive, if both MCAs are investigated. In the case of negative testing, the examination is repeated using the Valsalva maneuver. Compared to TEE, c-TCD is more comfortable for the patient, enables an easier assessment of the size and functional relevance of the RLS, and allows also the detection of extracardiac RLS. However, c-TCD cannot localize the site of the RLS. Therefore, TEE and TCD are complementary methods and should be applied jointly in order to increase the diagnostic accuracy for detecting PFO and other types of RLS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).