945 resultados para Specimen
Resumo:
We explored the feasibility of community pharmacies for the distribution of chlamydia specimen self-collection kits, which featured a transport medium allowing postage of urine specimens in Australia. Eligible clients were requested to complete a code-matched risk-screening questionnaire in the pharmacy, and the derived risk scores were compared to the test results from the corresponding specimen. Four Queensland pharmacies distributed 156 kits, while 44 questionnaires and 18 specimens were received.
Resumo:
Objective Surveillance programs and research for acute respiratory infections in remote Aboriginal communities are complicated by difficulties in the storage and transport of frozen samples to urban laboratories for testing. This study assessed the sensitivity of a simple method for transporting respiratory samples from a remote setting for viral PCR compared with frozen specimens. Methods We sampled every individual who presented to a remote Aboriginal community clinic in a non-epidemic respiratory season. Two anterior nasal swabs were collected from each participant. The left nare specimen was mailed to the laboratory via routine postal services. The right nare specimen was transported frozen. Testing for 16 viruses was undertaken using real-time multiplex PCR. Results A total of 140 participants were enrolled who contributed 150 study visits. Respiratory illnesses accounted for 10% of the reasons for presentation. Sixty-one viruses were identified in 50 (33.3%) presentations for 40 (28.6%) individuals; bocavirus and rhinovirus were the most common viruses identified (14.0% and 12.6% of episodes respectively). The sensitivity for any virus detected in mailed specimens was 67.2% (95%CI 55.4, 78.9) compared to 65.6% (95%CI 53.7, 77.5) for frozen specimens. Conclusion The mailing of unfrozen nasal specimens from remote communities does not compromise the viability of the specimen for viral studies.
Resumo:
The effects of crack depth (a/W) and specimen width W on the fracture toughness and ductile±brittle transition have been investigated using three-point bend specimens. Finite element analysis is employed to obtain the stress-strain fields ahead of the crack tip. The results show that both normalized crack depth (a/W) and specimen width (W) affect the fracture toughness and ductile±brittle fracture transition. The measured crack tip opening displacement decreases and ductile±brittle transition occurs with increasing crack depth (a/W) from 0.1 to 0.2 and 0.3. At a fixed a/W (0.2 or 0.3), all specimens fail by cleavage prior to ductile tearing when specimen width W increases from 25 to 40 and 50 mm. The lower bound fracture toughness is not sensitive to crack depth and specimen width. Finite element analysis shows that the opening stress in the remaining ligament is elevated with increasing crack depth or specimen width due to the increase of in-plane constraint. The average local cleavage stress is dependent on both crack depth and specimen width but its lower bound value is not sensitive to constraint level. No fixed distance can be found from the cleavage initiation site to the crack tip and this distance increases gradually with decreasing inplane constraint.
Resumo:
Specimen-based records of most of the plant pathogens that occur in Australia can be accessed through the Australian Plant Disease Database and the Australian Plant Pest Database. These databases and the herbaria that underpin them are important resources for resolving quarantine and trade issues as well as for the diagnosis of plant diseases. The importance of these collections and databases to Australia's agricultural industries is discussed.
Resumo:
The near-tip deformation field in a high-constraint three-point bend specimen of pure aluminium single crystal is studied using in situ electron back-scattered diffraction and optical metallography. The orientation considered has the notch lying on the (0 1 0) plane and the notch front along direction. Results clearly show the occurrence of a kink shear sector boundary at 90° to the notch line on the specimen free surface as predicted by the analytical model of Rice [J.R. Rice, Mech. Mater. 6 (1987) 317].
Resumo:
Mathematical models, for the stress analysis of symmetric multidirectional double cantilever beam (DCB) specimen using classical beam theory, first and higher-order shear deformation beam theories, have been developed to determine the Mode I strain energy release rate (SERR) for symmetric multidirectional composites. The SERR has been calculated using the compliance approach. In the present study, both variationally and nonvariationally derived matching conditions have been applied at the crack tip of DCB specimen. For the unidirectional and cross-ply composite DCB specimens, beam models under both plane stress and plane strain conditions in the width direction are applicable with good performance where as for the multidirectional composite DCB specimen, only the beam model under plane strain condition in the width direction appears to be applicable with moderate performance. Among the shear deformation beam theories considered, the performance of higher-order shear deformation beam theory, having quadratic variation for transverse displacement over the thickness, is superior in determining the SERR for multidirectional DCB specimen.
Resumo:
Conventional methods for determining the refractive index demand specimens of optical quality, the preparation of which is often very difficult. An indirect determination by matching the refractive indices of specimen and immersion liquid is a practical alternative for photoelastic specimen of nonoptical quality. An experimental arrangement used for this technique and observations made while matching the refractive indices of three different specimens are presented.
Resumo:
We report a combined experimental and computational study of a low constraint aluminum single crystal fracture geometry and investigate the near-tip stress and strain fields. To this end, a single edge notched tensile (SENT) specimen is considered. A notch, with a radius of 50 µm, is taken to lie in the (010) plane and its front is aligned along the [101] direction. Experiments are conducted by subjecting the specimen to tensile loading using a special fixture inside a scanning electron microscope chamber. Both SEM micrographs and electron back-scattered diffraction (EBSD) maps are obtained from the near-tip region. The experiments are complemented by performing 3D and 2D plane strain finite element simulations within a continuum crystal plasticity framework assuming an isotropic hardening response characterized by the Pierce–Asaro–Needleman model. The simulations show a distinct slip band forming at about 55 deg with respect to the notch line corresponding to slip on (11-bar 1)[011] system, which corroborates well with experimental data. Furthermore, two kink bands occur at about 45 deg and 90 deg with respect to the notch line within which large rotations in the crystal orientation take place. These predictions are in good agreement with the EBSD observations. Finally, the near-tip angular variations of the 3D stress and plastic strain fields in the low constraint SENT fracture geometry are examined in detail.
Resumo:
In this work a single edge notched plate (SEN(T)) subjected to a tensile stress pulse is analysed, using a 2D plane strain dynamic finite element procedure. The interaction of the notch with a pre-nucleated hole ahead of it is examined. The background material is modelled by the Gurson constitutive law and ductile failure by microvoid coalescence in the ligament connecting the notch and the hole is simulated. Both rate independent and rate dependent material behaviour is considered. The notch tip region is subjected to a range of loading rates j by varying the peak value and the rise time of the applied stress pulse. The results obtained from these simulations are compared with a three point bend (TPB) specimen subjected to impact loading analysed in an earlier work [3] The variation of J at fracture initiation, J(c), with average loading rate j is obtained from the finite element simulations. It is found that the functional relationship between J(c) and j is fairly independent of the specimen geometry and is only dependent on material behaviour.
Resumo:
The displacement between the ridges situated outside the filleted test section of an axially loaded unnotched specimen is computed from the axial load and shape of the specimen and compared with extensometer deflection data obtained from experiments. The effect of prestrain on the extensometer deflection versus specimen strain curve has been studied experimentally and analytically. An analytical study shows that an increase in the slope of the stress-strain curve in the inelastic region increases the slope of the corresponding computed extensometer deflection versus specimen strain curve. A mathematical model has been developed which uses a modified length ¯ℓef in place of the actual length of the uniform diameter test section of the specimen. This model predicts the extensometer deflection within 5% of the corresponding experimental value. This method has been successfully used by the authors to evolve an iterative procedure for predicting the cyclic specimen strain in axial fatigue tests on unnotched specimens.
Resumo:
Inspired by the Brazilian disk geometry we examine the utility of an edge cracked semicircular disk (ECSD) specimen for rapid assessment of fracture toughness of brittle materials using compressive loading. It is desirable to optimize the geometry towards a constant form factor F for evaluating K-I. In this investigation photoelastic and finite element results for K-I evaluation highlight the effect of loading modeled using a Hertzian. A Hertzian loading subtending 4 degrees at the center leads to a surprisingly constant form factor of 1.36. This special case is further analyzed by applying uniform pressure over a chord for facilitating testing.
Resumo:
In the last decades the creation of new Environmental Specimen Banks (ESB) is increasing due to the necessity of knowing the effects of pollutants in both the environment and human populations. ESBs analyze and store samples in order to understand the effects of chemicals, emerging substances and the environmental changes in biota. For a correct analysis of the effect induced by these variables, there is a need to add biological endpoints, such as biomarkers, to the endpoints based on chemical approaches which have being used until now. It is essential to adapt ESB´s sampling strategies in order to enable scientists to apply new biological methods. The present study was performed to obtain biochemical endpoints from samples stored in the BBEBB (Biscay Bay Environmental Biospecimen Bank) of the Marine Station of Plentzia (PIE - UPV/EHU). The main objective of the present work was to study the variability caused in biochemical biomarkers by different processing methods in mussels (Mytilus galloprovincialis) from two localities (Plentzia and Arriluze) with different pollution history. It can be concluded that the selected biomarkers (glutathione S-transferase and acetylcholinesterase) can be accurately measured in samples stored for years in the ESBs. The results also allowed the discrimination of both sampling sites. However, in a further step, the threshold levels and baseline values should be characterized for a correct interpretation of the results in relation to the assessment of the ecosystem health status.