967 resultados para Specificity of memory retrieval
Resumo:
Dissertação de Mestrado apresentada no ISPA – Instituto Universitário para obtenção do grau de Mestre em Psicologia especialidade de Psicologia Clínica.
Resumo:
Purpose/Objective: Phenotypic and functional T cell properties are usually analyzed at the level of defined cell populations. However, large differences between individual T cells may have important functional consequences. To answer this issue, we performed highly sensitive single-cell gene expression profiling, which allows the direct ex vivo characterization of individual virus- and tumor-specific T cells from healthy donors and melanoma patients. Materials and methods: HLA-A*0201-positive patients with stage III/ IV metastatic melanoma were included in a phase I clinical trial (LUD- 00-018). Patients received monthly low-dose of the Melan-AMART- 1 26_35 unmodified natural (EAAGIGILTV) or the analog A27L (ELAGIGILTV) peptides, mixed CPG and IFA. Individual effector memory CD28+ (EM28+) and EM28- tetramer-specific CD8pos T cells were sorted by flow cytometer. Following direct cell lysis and reverse transcription, the resulting cDNA was precipitated and globally amplified. Semi-quantitative PCR was used for gene expression and TCR BV repertoire analyses. Results: We have previously shown that vaccination with the natural Melan-A peptide induced T cells with superior effector functions as compared to the analog peptide optimized for enhanced HLA binding. Here we found that natural peptide vaccination induced EM28+ T cells with frequent co-expression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3 and CCR5) and effector-related genes (IFNG, KLRD1, PRF1 and GZMB), comparable to protective EBV- and CMV-specific T cells. In contrast, memory/homing- and effectorassociated genes were less frequently co-expressed after vaccination with the analog peptide. Conclusions: These findings reveal a previously unknown level of gene expression diversity among vaccine- and virus-specific T cells with the simultaneous co-expression of multiple memory/homing- and effector- related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor- and virus-specific T cells.
Resumo:
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.
Resumo:
Activation dynamics of hippocampal subregions during spatial learning and their interplay with neocortical regions is an important dimension in the understanding of hippocampal function. Using the (14C)-2-deoxyglucose autoradiographic method, we have characterized the metabolic changes occurring in hippocampal subregions in mice while learning an eight-arm radial maze task. Autoradiogram densitometry revealed a heterogeneous and evolving pattern of enhanced metabolic activity throughout the hippocampus during the training period and on recall. In the early stages of training, activity was enhanced in the CA1 area from the intermediate portion to the posterior end as well as in the CA3 area within the intermediate portion of the hippocampus. At later stages, CA1 and CA3 activations spread over the entire longitudinal axis, while dentate gyrus (DG) activation occurred from the anterior to the intermediate zone. Activation of the retrosplenial cortex but not the amygdala was also observed during the learning process. On recall, only DG activation was observed in the same anterior part of the hippocampus. These results suggest the existence of a functional segmentation of the hippocampus, each subregion being dynamically but also differentially recruited along the acquisition, consolidation, and retrieval process in parallel with some neocortical sites.
Resumo:
Neuronal models predict that retrieval of specific event information reactivates brain regions that were active during encoding of this information. Consistent with this prediction, this positron-emission tomography study showed that remembering that visual words had been paired with sounds at encoding activated some of the auditory brain regions that were engaged during encoding. After word-sound encoding, activation of auditory brain regions was also observed during visual word recognition when there was no demand to retrieve auditory information. Collectively, these observations suggest that information about the auditory components of multisensory event information is stored in auditory responsive cortex and reactivated at retrieval, in keeping with classical ideas about “redintegration,” that is, the power of part of an encoded stimulus complex to evoke the whole experience.
Resumo:
Human functional neuroimaging techniques provide a powerful means of linking neural level descriptions of brain function and cognition. The exploration of the functional anatomy underlying human memory comprises a prime example. Three highly reliable findings linking memory-related cognitive processes to brain activity are discussed. First, priming is accompanied by reductions in the amount of neural activation relative to naive or unprimed task performance. These reductions can be shown to be both anatomically and functionally specific and are found for both perceptual and conceptual task components. Second, verbal encoding, allowing subsequent conscious retrieval, is associated with activation of higher order brain regions including areas within the left inferior and dorsal prefrontal cortex. These areas also are activated by working memory and effortful word generation tasks, suggesting that these tasks, often discussed as separable, might rely on interdependent processes. Finally, explicit (intentional) retrieval shares much of the same functional anatomy as the encoding and word generation tasks but is associated with the recruitment of additional brain areas, including the anterior prefrontal cortex (right > left). These findings illustrate how neuroimaging techniques can be used to study memory processes and can both complement and extend data derived through other means. More recently developed methods, such as event-related functional MRI, will continue this progress and may provide additional new directions for research.
Resumo:
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset movement disorder associated with FMR1 premutation alleles. Asymptomatic premutation (aPM) carriers have preserved cognitive functions, but they present subtle executive deficits. Current efforts are focusing on the identification of specific cognitive markers that can detect aPM carriers at higher risk of developing FXTAS. This study aims at evaluating verbal memory and executive functions as early markers of disease progression while exploring associated brain structure changes using diffusion tensor imaging. We assessed 30 aPM men and 38 intrafamilial controls. The groups perform similarly in the executive domain except for decreased performance in motor planning in aPM carriers. In the memory domain, aPM carriers present a significant decrease in verbal encoding and retrieval. Retrieval is associated with microstructural changes of the white matter (WM) of the left hippocampal fimbria. Encoding is associated with changes in the WM under the right dorsolateral prefrontal cortex, a region implicated in relational memory encoding. These associations were found in the aPM group only and did not show age-related decline. This may be interpreted as a neurodevelopmental effect of the premutation, and longitudinal studies are required to better understand these mechanisms.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
We sometimes vividly remember things that did not happen, a phenomenon with general relevance, not only in the courtroom. It is unclear to what extent individual differences in false memories are driven by anatomical differences in memory-relevant brain regions. Here we show in humans that microstructural properties of different white matter tracts as quantified using diffusion tensor imaging are strongly correlated with true and false memory retrieval. To investigate these hypotheses, we tested a large group of participants in a version of the Deese-Roediger-McDermott paradigm (recall and recognition) and subsequently obtained diffusion tensor images. A voxel-based whole-brain level linear regression analysis was performedto relatefractional anisotropyto indices oftrue andfalse memory recall and recognition. True memory was correlated to diffusion anisotropy in the inferior longitudinal fascicle, the major connective pathway of the medial temporal lobe, whereas a greater proneness to retrieve false items was related to the superior longitudinal fascicle connecting frontoparietal structures. Our results show that individual differences in white matter microstructure underlie true and false memory performance.
Resumo:
A decade of studies on long-term habituation (LTH) in the crab Chasmagnathus is reviewed. Upon sudden presentation of a passing object overhead, the crab reacts with an escape response that habituates promptly and for at least five days. LTH proved to be an instance of associative memory and showed context, stimulus frequency and circadian phase specificity. A strong training protocol (STP) (³15 trials, intertrial interval (ITI) of 171 s) invariably yielded LTH, while a weak training protocol (WTP) (£10 trials, ITI = 171 s) invariably failed. STP was used with a presumably amnestic agent and WTP with a presumably hypermnestic agent. Remarkably, systemic administration of low doses was effective, which is likely to be due to the lack of an endothelial blood-brain barrier. LTH was blocked by inhibitors of protein and RNA synthesis, enhanced by protein kinase A (PKA) activators and reduced by PKA inhibitors, facilitated by angiotensin II and IV and disrupted by saralasin. The presence of angiotensins and related compounds in the crab brain was demonstrated. Diverse results suggest that LTH includes two components: an initial memory produced by spaced training and mainly expressed at an initial phase of testing, and a retraining memory produced by massed training and expressed at a later phase of testing (retraining). The initial memory would be associative, context specific and sensitive to cycloheximide, while the retraining memory would be nonassociative, context independent and insensitive to cycloheximide
Resumo:
The effects of L-histidine (LH) on anxiety and memory retrieval were investigated in adult male Swiss Albino mice (weight 30-35 g) using the elevated plus-maze. The test was performed on two consecutive days: trial 1 (T1) and trial 2 (T2). In T1, mice received an intraperitoneal injection of saline (SAL) or LH before the test and were then injected again and retested 24 h later. LH had no effect on anxiety at the dose of 200 mg/kg since there was no difference between the SAL-SAL and LH-LH groups at T1 regarding open-arm entries (OAE) and open-arm time (OAT) (mean ± SEM; OAE: 4.0 ± 0.71, 4.80 ± 1.05; OAT: 40.55 ± 9.90, 51.55 ± 12.10, respectively; P > 0.05, Kruskal-Wallis test), or at the dose of 500 mg/kg (OAE: 5.27 ± 0.73, 4.87 ± 0.66; OAT: 63.93 ± 11.72, 63.58 ± 10.22; P > 0.05, Fisher LSD test). At T2, LH-LH animals did not reduce open-arm activity (OAE and OAT) at the dose of 200 mg/kg (T1: 4.87 ± 0.66, T2: 5.47 ± 1.05; T1: 63.58 ± 10.22; T2: 49.01 ± 8.43 for OAE and OAT, respectively; P > 0.05, Wilcoxon test) or at the dose of 500 mg/kg (T1: 4.80 ± 1.60, T2: 4.70 ± 1.04; T1: 51.55 ± 12.10, T2: 43.88 ± 10.64 for OAE and OAT, respectively; P > 0.05, Fisher LSD test), showing an inability to evoke memory 24 h later. These data suggest that LH does not act on anxiety but does induce a state-dependent memory retrieval deficit in mice.
Resumo:
Possible impairments of memory in end-stage renal disease (ESRD) were investigated in two experiments. In Experiment 1, in which stimulus words were presented visually, participants were tested on conceptual or perceptual memory tasks, with retrieval being either explicit or implicit. Compared with healthy controls, ESRD patients were impaired when memory required conceptual but not when it required perceptual processing, regardless of whether retrieval was explicit or implicit. An impairment of conceptual implicit memory (priming) in the ESRD group represented a previously unreported deficit compared to healthy aging. There were no significant differences between pre- and immediate post-dialysis memory performance in ESRD patients on any of the tasks. In Experiment 2, in which presentation was auditory, patients again performed worse than controls on an explicit conceptual memory task. We conclude that the type of processing required by the task (conceptual vs. perceptual) is more important than the type of retrieval (explicit vs. implicit) in memory failures in ESRD patients, perhaps because temporal brain regions are more susceptible to the effects of the illness than are posterior regions.
Resumo:
The present work proposes an investigation of the treatment given to memory in Pinter’s latest play, Ashes to Ashes, and of its function in the development of Pinter’s work. In order to do that, different aspects of the construction of meaning in the theatre are analysed, so that the specificity of its reception is determined. A survey of techniques used to present information, time and space in the theatre is made. The analytical drama, the history drama, and the theatre of the absurd are defined. After that, the evolution of the author’s work is analysed to determine what characterises Pinter’s work, while at the same time determining how his treatment of themes like menace, memory, and political oppression of the individual has evolved. Finally, a detailed survey of the apparently disconnected elements that are mentioned in Ashes to Ashes is made. The intertextual analysis allied to a study of the analytical form as used in this play enables the discovery of several layers of meaning. Through the connection established between the Holocaust and man’s fall followed by expulsion from Eden, Pinter examines the use of memory as a way of dealing with personal and collective responsibility and guilt. It is through the recovery of memory (also through writing) that the present can establish a critical and responsible relation with the past.
Resumo:
The synaptic vesicle membrane protein synaptotagmin (tagmin) is essential for fast, calcium-dependent, neurotransmitter release and is likely to be the calcium sensor for exocytosis, because of its many calcium-dependent properties. Polyphosphoinositides are needed for exocytosis, but it has not been known why. We now provide a possible connection between these observations with the finding that the C2B domain of tagmin I binds phosphatidylinositol-4,5-bisphosphate (PIns-4,5-P2), its isomer phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate (PIns-3,4,5-P3). Calcium ions switch the specificity of this binding from PIns-3,4,5-P3 (at calcium concentrations found in resting nerve terminals) to PIns-4,5-P2 (at concentration of calcium required for transmitter release). Inositol polyphosphates, known blockers of neurotransmitter release, inhibit the binding of both PIns-4,5-P2 and PIns-3,4,5-P3 to tagmin. Our findings imply that tagmin may operate as a bimodal calcium sensor, switching bound lipids during exocytosis. This connection to polyphosphoinositides, compounds whose levels are physiologically regulated, could be important for long-term memory and learning.