989 resultados para Species-area relation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axelrod`s model for culture dissemination offers a nontrivial answer to the question of why there is cultural diversity given that people`s beliefs have a tendency to become more similar to each other`s as they interact repeatedly. The answer depends on the two control parameters of the model, namely, the number F of cultural features that characterize each agent, and the number q of traits that each feature can take on, as well as on the size A of the territory or, equivalently, on the number of interacting agents. Here, we investigate the dependence of the number C of distinct coexisting cultures on the area A in Axelrod`s model, the culture-area relationship, through extensive Monte Carlo simulations. We find a non-monotonous culture-area relation, for which the number of cultures decreases when the area grows beyond a certain size, provided that q is smaller than a threshold value q (c) = q (c) (F) and F a parts per thousand yen 3. In the limit of infinite area, this threshold value signals the onset of a discontinuous transition between a globalized regime marked by a uniform culture (C = 1), and a completely polarized regime where all C = q (F) possible cultures coexist. Otherwise, the culture-area relation exhibits the typical behavior of the species-area relation, i.e., a monotonically increasing curve the slope of which is steep at first and steadily levels off at some maximum diversity value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite widespread use of species-area relationships (SARs), dispute remains over the most representative SAR model. Using data of small-scale SARs of Estonian dry grassland communities, we address three questions: (1) Which model describes these SARs best when known artifacts are excluded? (2) How do deviating sampling procedures (marginal instead of central position of the smaller plots in relation to the largest plot; single values instead of average values; randomly located subplots instead of nested subplots) influence the properties of the SARs? (3) Are those effects likely to bias the selection of the best model? Our general dataset consisted of 16 series of nested-plots (1 cm(2)-100 m(2), any-part system), each of which comprised five series of subplots located in the four corners and the centre of the 100-m(2) plot. Data for the three pairs of compared sampling designs were generated from this dataset by subsampling. Five function types (power, quadratic power, logarithmic, Michaelis-Menten, Lomolino) were fitted with non-linear regression. In some of the communities, we found extremely high species densities (including bryophytes and lichens), namely up to eight species in 1 cm(2) and up to 140 species in 100 m(2), which appear to be the highest documented values on these scales. For SARs constructed from nested-plot average-value data, the regular power function generally was the best model, closely followed by the quadratic power function, while the logarithmic and Michaelis-Menten functions performed poorly throughout. However, the relative fit of the latter two models increased significantly relative to the respective best model when the single-value or random-sampling method was applied, however, the power function normally remained far superior. These results confirm the hypothesis that both single-value and random-sampling approaches cause artifacts by increasing stochasticity in the data, which can lead to the selection of inappropriate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Species-accumulation curves for woody plants were calculated in three tropical forests, based on fully mapped 50-ha plots in wet, old-growth forest in Peninsular Malaysia, in moist, old-growth forest in central Panama, and in dry, previously logged forest in southern India. A total of 610 000 stems were identified to species and mapped to < Im accuracy. Mean species number and stem number were calculated in quadrats as small as 5 m x 5 m to as large as 1000 m x 500 m, for a variety of stem sizes above 10 mm in diameter. Species-area curves were generated by plotting species number as a function of quadrat size; species-individual curves were generated from the same data, but using stem number as the independent variable rather than area. 2 Species-area curves had different forms for stems of different diameters, but species-individual curves were nearly independent of diameter class. With < 10(4) stems, species-individual curves were concave downward on log-log plots, with curves from different forests diverging, but beyond about 104 stems, the log-log curves became nearly linear, with all three sites having a similar slope. This indicates an asymptotic difference in richness between forests: the Malaysian site had 2.7 times as many species as Panama, which in turn was 3.3 times as rich as India. 3 Other details of the species-accumulation relationship were remarkably similar between the three sites. Rectangular quadrats had 5-27% more species than square quadrats of the same area, with longer and narrower quadrats increasingly diverse. Random samples of stems drawn from the entire 50 ha had 10-30% more species than square quadrats with the same number of stems. At both Pasoh and BCI, but not Mudumalai. species richness was slightly higher among intermediate-sized stems (50-100mm in diameter) than in either smaller or larger sizes, These patterns reflect aggregated distributions of individual species, plus weak density-dependent forces that tend to smooth the species abundance distribution and 'loosen' aggregations as stems grow. 4 The results provide support for the view that within each tree community, many species have their abundance and distribution guided more by random drift than deterministic interactions. The drift model predicts that the species-accumulation curve will have a declining slope on a log-log plot, reaching a slope of O.1 in about 50 ha. No other model of community structure can make such a precise prediction. 5 The results demonstrate that diversity studies based on different stem diameters can be compared by sampling identical numbers of stems. Moreover, they indicate that stem counts < 1000 in tropical forests will underestimate the percentage difference in species richness between two diverse sites. Fortunately, standard diversity indices (Fisher's sc, Shannon-Wiener) captured diversity differences in small stem samples more effectively than raw species richness, but both were sample size dependent. Two nonparametric richness estimators (Chao. jackknife) performed poorly, greatly underestimating true species richness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from three forest sites in Sumatra (Batang Ule, Pasirmayang and Tebopandak) have been analysed and compared for the effects of sample area cut-off, and tree diameter cut-off. An 'extended inverted exponential model' is shown to be well suited to fitting tree-species-area curves. The model yields species carrying capacities of 680 for Batang Ule, 380 species for Pasirmayang, and 35 for Tebopandak (tree diameter >10cm). It would seem that in terms of species carrying capacity, Tebopandak and Pasirmayang are rather similar, and both less diverse than the hilly Batang Ule site. In terms of conservation policy, this would mean that rather more emphasis should be put on conserving hilly sites on a granite substratum. For Pasirmayang with tree diameter >3cm, the asymptotic species number estimate is 567, considerably higher than the estimate of 387 species for trees with diameter >10cm. It is clear that the diameter cut-off has a major impact on the estimate of the species carrying capacity. A conservative estimate of the total number of tree species in the Pasirmayang region is 632 species! In sampling exercises, the diameter cut-off should not be chosen lightly, and it may be worth adopting field sampling procedures which involve some subsampling of the primary sample area, where the diameter cut-off is set much lower than in the primary plots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Burkholderia cepacia complex comprises groups of genomovars (genotypically distinct strains with very similar phenotypes) that have emerged as important opportunistic pathogens in cystic fibrosis (CF) patients. The inflammatory response against bacteria in the airways of CF individuals is dominated by polymorphonuclear cells and involves the generation of oxidative stress, which leads to further inflammation and tissue damage. Bacterial catalase, catalase-peroxidase and superoxide dismutase activities may contribute to the survival of B. cepacia following exposure to reactive oxygen metabolites generated by host cells in response to infection. In the present study the authors investigated the production of catalase, peroxidase and SOD by isolates belonging to various genomovars of the B. cepacia complex. Production of both catalase and SOD was maximal during late stationary phase in almost all isolates examined. Native PAGE identified 13 catalase electrophoretotypes and two SOD electrophoretotypes (corresponding to an Fe-SOD class) in strains belonging to the six genomovars of the B. cepacia complex. Seven out of 11 strains displaying high-level survival after H(2)O(2) treatment in vitro had a bifunctional catalase/peroxidase, and included all the genomovar III strains examined. These isolates represent most of the epidemic isolates that are often associated with the cepacia syndrome. The majority of the isolates from all the genomovars were resistant to extracellular O(-)(2), while resistance to intracellularly generated O(-)(2)was highly variable and could not be correlated with the detected levels of SOD activity. Altogether the results suggest that resistance to toxic oxygen metabolites from extracellular sources may be a factor involved in the persistence of B. cepacia in the airways of CF individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing interest in how humans influence spatial patterns in biodiversity. One of the most frequently noted and marked of these patterns is the increase in species richness with area, the species-area relationship (SAR). SARs are used for a number of conservation purposes, including predicting extinction rates, setting conservation targets, and identifying biodiversity hotspots. Such applications can be improved by a detailed understanding of the factors promoting spatial variation in the slope of SARs, which is currently the subject of a vigorous debate. Moreover, very few studies have considered the anthropogenic influences on the slopes of SARs; this is particularly surprising given that in much of the world areas with high human population density are typically those with a high number of species, which generates conservation conflicts. Here we determine correlates of spatial variation in the slopes of species-area relationships, using the British avifauna as a case study. Whilst we focus on human population density, a widely used index of human activities, we also take into account (1) the rate of increase in habitat heterogeneity with increasing area, which is frequently proposed to drive SARs, (2) environmental energy availability, which may influence SARs by affecting species occupancy patterns, and (3) species richness. We consider environmental variables measured at both local (10 km x 10 km) and regional (290 km x 290 km) spatial grains, but find that the former consistently provides a better fit to the data. In our case study, the effect of species richness on the slope SARs appears to be scale dependent, being negative at local scales but positive at regional scales. In univariate tests, the slope of the SAR correlates negatively with human population density and environmental energy availability, and positively with the rate of increase in habitat heterogeneity. We conducted two sets of multiple regression analyses, with and without species richness as a predictor. When species richness is included it exerts a dominant effect, but when it is excluded temperature has the dominant effect on the slope of the SAR, and the effects of other predictors are marginal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species-area relationships (SAR) are fundamental in the understanding of biodiversity patterns and of critical importance for predicting species extinction risk worldwide. Despite the enormous attention given to SAR in the form of many individual analyses, little attempt has been made to synthesize these studies. We conducted a quantitative meta-analysis of 794 SAR, comprising a wide span of organisms, habitats and locations. We identified factors reflecting both pattern-based and dynamic approaches to SAR and tested whether these factors leave significant imprints on the slope and strength of SAR. Our analysis revealed that SAR are significantly affected by variables characterizing the sampling scheme, the spatial scale, and the types of organisms or habitats involved. We found that steeper SAR are generated at lower latitudes and by larger organisms. SAR varied significantly between nested and independent sampling schemes and between major ecosystem types, but not generally between the terrestrial and the aquatic realm. Both the fit and the slope of the SAR were scale-dependent. We conclude that factors dynamically regulating species richness at different spatial scales strongly affect the shape of SAR. We highlight important consequences of this systematic variation in SAR for ecological theory, conservation management and extinction risk predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the species-area relationship (SAR) expected from an assemblage of fractally distributed species. If species have truly fractal spatial distributions with different fractal dimensions, we show that the expected SAR is not the classical power-law function, as suggested recently in the literature. This analytically derived SAR has a distinctive shape that is not commonly observed in nature: upward-accelerating richness with increasing area (when plotted on log-log axes). This suggests that, in reality, most species depart from true fractal spatial structure. We demonstrate the fitting of a fractal SAR using two plant assemblages (Alaskan trees and British grasses). We show that in both cases, when modelled as fractal patterns, the modelled SAR departs from the observed SAR in the same way, in accord with the theory developed here. The challenge is to identify how species depart from fractality, either individually or within assemblages, and more importantly to suggest reasons why species distributions are not self-similar and what, if anything, this can tell us about the spatial processes involved in their generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing interest in how humans influence spatial patterns in biodiversity. One of the most frequently noted and marked of these patterns is the increase in species richness with area, the species–area relationship (SAR). SARs are used for a number of conservation purposes, including predicting extinction rates, setting conservation targets, and identifying biodiversity hotspots. Such applications can be improved by a detailed understanding of the factors promoting spatial variation in the slope of SARs, which is currently the subject of a vigorous debate. Moreover, very few studies have considered the anthropogenic influences on the slopes of SARs; this is particularly surprising given that in much of the world areas with high human population density are typically those with a high number of species, which generates conservation conflicts. Here we determine correlates of spatial variation in the slopes of species–area relationships, using the British avifauna as a case study. Whilst we focus on human population density, a widely used index of human activities, we also take into account (1) the rate of increase in habitat heterogeneity with increasing area, which is frequently proposed to drive SARs, (2) environmental energy availability, which may influence SARs by affecting species occupancy patterns, and (3) species richness. We consider environmental variables measured at both local (10 km × 10 km) and regional (290 km × 290 km) spatial grains, but find that the former consistently provides a better fit to the data. In our case study, the effect of species richness on the slope SARs appears to be scale dependent, being negative at local scales but positive at regional scales. In univariate tests, the slope of the SAR correlates negatively with human population density and environmental energy availability, and positively with the rate of increase in habitat heterogeneity. We conducted two sets of multiple regression analyses, with and without species richness as a predictor. When species richness is included it exerts a dominant effect, but when it is excluded temperature has the dominant effect on the slope of the SAR, and the effects of other predictors are marginal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report on range use patterns of birds in relation to tropical forest fragmentation. Between 2003 and 2005, three understorey passerine species were radio-tracked in five locations of a fragmented and in two locations of a contiguous forest landscape on the Atlantic Plateau of Sao Paulo in south-eastern Brazil. Standardized ten-day home ranges of 55 individuals were used to determine influences of landscape pattern, season, species, sex and age. In addition, total observed home ranges of 76 individuals were reported as minimum measures of spatial requirements of the species. Further, seasonal home ranges of recaptured individuals were compared to examine site fidelity. Chiroxiphia caudata, but not Pyriglena leucoptera or Sclerurus scansor, used home ranges more than twice as large in the fragmented versus contiguous forest. Home range sizes of C. caudata differed in relation to sex, age, breeding status and season. Seasonal home ranges greatly overlapped in both C. caudata and in S. scansor. Our results suggest that one response by some forest bird species to habitat fragmentation entails enlarging their home ranges to include several habitat fragments, whereas more habitat-sensitive species remain restricted to larger forest patches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A positive relationship between species richness and island size is thought to emerge from an equilibrium between immigration and extinction rates, but the influence of species diversification on the form of this relationship is poorly understood. Here, we show that within-lake adaptive radiation strongly modifies the species-area relationship for African cichlid fishes. The total number of species derived from in situ speciation increases with lake size, resulting in faunas orders of magnitude higher in species richness than faunas assembled by immigration alone. Multivariate models provide evidence for added influence of lake depth on the species-area relationship. Diversity of clades representing within-lake radiations show responses to lake area, depth and energy consistent with limitation by these factors, suggesting that ecological factors influence the species richness of radiating clades within these ecosystems. Together, these processes produce lake fish faunas with highly variable composition, but with diversities that are well predicted by environmental variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal netzplankton samples from stations in the Changjiang (Yangtze River) Estuary were collected from May, 2004 to February, 2005. The dominant species and their contribution to the total zooplankton abundance were determined. Moreover, the relationship between the salinity and abundance was studied with stepwise linear regression. During the whole year, the salinity was positively correlated with the abundance, while the temperature, negatively. Linear regression analysis showed also a high positive correlation with salinity for total abundance in August and November, while in February and May, no obvious relations were found. The most abundant community was composed of neritic and brackish-water species. The North Passage (NP) (salinity <5) was greatly diluted by freshwater while the North Branch (NB) was brackish water with salinity range of 12-28. Consequently, clear decline in abundance of zooplankton was along the estuarine haloclines from the maximum in the area of high salinity to the minimum in the limnetic zone. Total zooplankton abundance and biomass were lower in NP than the NB in all seasons. In short, the salinity influenced the abundance of each species of zooplankton, and ultimately determined the total abundance of zooplankton. Furthermore, a winter peak in the abundance existed, which might be caused by the flourishing of Sinocalanus sinensis, a widely distributed species in the Changjiang Estuary.