998 resultados para Species replacement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Camera traps are used to estimate densities or abundances using capture-recapture and, more recently, random encounter models (REMs). We deploy REMs to describe an invasive-native species replacement process, and to demonstrate their wider application beyond abundance estimation. The Irish hare Lepus timidus hibernicus is a high priority endemic of conservation concern. It is threatened by an expanding population of non-native, European hares L. europaeus, an invasive species of global importance. Camera traps were deployed in thirteen 1 km squares, wherein the ratio of invader to native densities were corroborated by night-driven line transect distance sampling throughout the study area of 1652 km2. Spatial patterns of invasive and native densities between the invader’s core and peripheral ranges, and native allopatry, were comparable between methods. Native densities in the peripheral range were comparable to those in native allopatry using REM, or marginally depressed using Distance Sampling. Numbers of the invader were substantially higher than the native in the core range, irrespective of method, with a 5:1 invader-to-native ratio indicating species replacement. We also describe a post hoc optimization protocol for REM which will inform subsequent (re-)surveys, allowing survey effort (camera hours) to be reduced by up to 57% without compromising the width of confidence intervals associated with density estimates. This approach will form the basis of a more cost-effective means of surveillance and monitoring for both the endemic and invasive species. The European hare undoubtedly represents a significant threat to the endemic Irish hare.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With field, laboratory, and modeling approaches, we examined the interplay among habitat structure, intraguild predation (IGP), and parasitism in an ongoing species invasion. Native Gammarus duebeni celticus (Crustacea: Amphipoda) are often, but not always, replaced by the invader Gammarus pulex through differential IGP. The muscle-wasting microsporidian parasite Pleistophora mulleri infects the native but not the invader. We found a highly variable prevalence of P. mulleri in uninvaded rivers, with 0–91% of hosts parasitized per sample. In addition, unparasitized natives dominated fast-flowing riffle patches of river, whereas parasitized individuals dominated slower- flowing, pooled patches. We examined the survivorship of invader and native in single and mixed-species microcosms with high, intermediate, and zero parasite prevalence. G. pulex survivorship was high in all treatments, whereas G. duebeni subsp. celticus survivorship was significantly lower in the presence of the invader. Further, parasitized G. duebeni subsp. celticus experienced near-total elimination. Models of the species replacement process implied that parasite-enhanced IGP would make invasion by G. pulex more likely, regardless of habitat and parasite spatial structure. However, where heterogeneity in parasite prevalence creates a landscape of patches with different susceptibilities to invasion, G. pulex may succeed in cases where invasion would not be possible if patches were equivalent. The different responses of parasitized and unparasitized G. duebeni subsp. celticus to environmental heterogeneity potentially link landscape patterns to the success or failure of the invasion process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The impact of invasive bank vole (Myodes glareolus) and greater white-toothed shrew (Crocidura russula) on indigenous Irish small mammals, varies with season and habitat. We caught bank voles in deciduous woodland, young coniferous plantations and open habitats such as rank grass. The greater white-toothed shrew was absent from deciduous woods and plantations but did use open habitats with low level cover in addition to field margins. Numbers of both invasive species in field margins during summer were higher than in the previous spring. The indigenous wood mouse (Apodemus sylvaticus) and pygmy shrew (Sorex minutus), differed in degrees of negative response to invasive species. Wood mice with bank voles in hedgerows had reduced recruitment and lower peak abundance. This effect was less extreme where both invasive species were present. Wood mice numbers along field margins and open habitats were significantly depressed by the presence of the bank vole with no such effect in deciduous woodland or coniferous plantations. Summer recruitment in pygmy shrews was reduced in hedgerows with bank voles. Where greater white-toothed shrew was present, the pygmy shrew was entirely absent from field margins. Species replacement due to invasive small mammals is occurring in their major habitat i.e. field margins and open habitats where there is good ground cover. Pygmy shrew will probably disappear from these habitats throughout Ireland. Wood mice and possibly pygmy shrew may survive in deciduous woodland and conifer plantations. Mitigation of impacts of invasive species should include expansion of woodland in which native species can survive.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Beta diversity quantifies spatial and/or temporal variation in species composition. It is comprised of two distinct components, species replacement and nestedness, which derive from opposing ecological processes. Using Scotland as a case study and a β-diversity partitioning framework, we investigate temporal replacement and nestedness patterns of coastal grassland species over a 34-yr time period. We aim to 1) understand the influence of two potentially pivotal processes (climate and land-use changes) on landscape-scale (5 × 5 km) temporal replacement and nestedness patterns, and 2) investigate whether patterns from one β-diversity component can mask observable patterns in the other.

We summarised key aspects of climate driven macro-ecological variation as measures of variance, long-term trends, between-year similarity and extremes, for three important climatic predictors (minimum temperature, water-balance and growing degree-days). Shifts in landscape-scale heterogeneity, a proxy of land-use change, was summarised as a spatial multiple-site dissimilarity measure. Together, these climatic and spatial predictors were used in a multi-model inference framework to gauge the relative contribution of each on temporal replacement and nestedness patterns.

Temporal β-diversity patterns were reasonably well explained by climate change but weakly explained by changes in landscape-scale heterogeneity. Climate was shown to have a greater influence on temporal nestedness than replacement patterns over our study period, linking nestedness patterns, as a result of imbalanced gains and losses, to climatic warming and extremes respectively. Important climatic predictors (i.e. growing degree-days) of temporal β-diversity were also identified, and contrasting patterns between the two β-diversity components revealed.

Results suggest climate influences plant species recruitment and establishment processes of Scotland's coastal grasslands, and while species extinctions take time, they are likely to be facilitated by climatic perturbations. Our findings also highlight the importance of distinguishing between different components of β-diversity, disentangling contrasting patterns than can mask one another.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Variation in physical gradients and production along estuaries can alter species compositions. Spatiotemporal variation in abundance and distribution of palaemonid shrimp species was investigated in relation to seasonal freshwater inputs and salinity in the Shark River Estuary, Everglades National Park, Florida, USA. Using trapping techniques, multiple sites were sampled repeatedly extending from the headwaters to the Gulf of Mexico. Stable isotope analyses were also performed on a subset of samples. Five palaemonid species occurred in the samples: Palaemonetes paludosus (Gibbes, 1850), Palaemonetes pugio (Holthuis, 1949), Palaemonetes intermedius (Holthuis, 1949), Palaemon floridanus (Chace, 1942), and Leander paulensis(Ortmann, 1897). Overall, shrimp catches in traps doubled in the dry season. Catches in the upper estuary were dominated by P.paludosus, particularly in the wet season, while catch per unit effort at the most downstream and highest salinity sites were dominated by P. floridanus. At mid-estuary, several species co-occurred. δ15n analyses revealed that most species filled similar roles in the community, with the exception of P. paludosus, which shifted from enrichment in the dry season to depletion in the wet season as it expanded downstream in the estuary. Palaemonid δ13C values varied between sites and seasons, with shrimp in upstream sites being more depleted. These data suggest that changes in salinity regimes resulting from Everglades restoration efforts may result in species replacement, with potential implications for trophic dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文以青藏高原东部的高山草甸为研究对象,设置早融、中间及晚融三个融雪部位,采用实验室测量、野外测量、野外样方调查相结合的 方法,从个体、种群和群落的水平上比较研究了高山雪场植物在同一雪场样地中不同融雪梯度上的特征变异及适应,结果表明: 从早融到晚融的梯度上,随着融雪时间的逐渐推迟,表土日温差降低,冻融交替的强度减弱,土壤水份逐渐增加,总N、总P、总K 以及 可溶性的N、P 和pH 变化不明显,土壤有机质及可溶性的K 和Ca 逐渐降低。冻融交替强度上的差异以及土壤水分差异被认为是融雪梯度上 影响植物生长的主要原因。 从早融到晚融的梯度上,伴随着生态因子的改变,几种常见植物的个体特征也发生相应的变化。首先,物候期推迟。植物开始生长的时间 一般要推迟将近二十天,但同一种植物在不同的融雪部位上的衰老期趋于一致,这预示着在晚融部位同一植物的生长期要缩短。其次,个体生 长特性发生改变。黑褐穗苔草(Carex atrofusca subsp. minor (Boott) T.Koyama)和西北黄芪(Astragalus fenzelianus Pet.-Stib.)的个体生长(株高、单株叶数、单叶面积和地上生物量)表现为逐渐增加的趋势;斑唇马先蒿(Pedicularis longiflora Rudolph var. tubiformis (Klotz.) Tsoong)和川西小黄菊(Pyrethrum tatsienense (Bur. et Franch.) Ling ex Shih.)则表现为逐渐降低的趋势;长叶火绒草(Leontopodium longifolium Ling)在融雪梯度上的变化趋势不明显。再次,从繁殖特性来看,大卫马先蒿(Pedicularis davidii var. pentodon Tsoong)的单株花数、单花种子数、种子千粒重及种子萌发率随融雪的推迟呈现为逐渐增加的趋势;圆穗蓼(Polygonum macrophyllum D.Don)的种子(小坚果)千粒重和萌发率也表现为逐渐增加,其余繁殖特征变化不明显。 在种群层次上,几个常见物种的分布格局随着融雪的推迟都发生一定的变化,基本上表现为从早融的集群分布到中间或晚融部位的随机分布。物种间的联结性也发生较大的变化,由早融部位的总体上的正关联逐步过度到晚融部位上的总体上的负关联。特定种对间的联结性也发生较大的变化。恶劣环境条件(如剧烈的冻融交替)的影响以及对恶劣条件适应被认为是分布格局及种间联结性发生变化的主要原因。 在群落层次上,物种多样性的变化表现为单峰曲线的格局,即在中间部位多样性最高。早融部位强烈的冻融交替和晚融部位缩短的生长季是早融及晚融部位物种多样性不高的重要原因。几乎所有的只出现在一个融雪部位(雪深级别)上的物种都发生在中间融雪部位。这说明,中等的雪深更有利于许多高山植物的存活,而过浅过深的积雪都不利于植物的生存。另外,相距较近的融雪梯度之间的物种相似性较大,而相距较远的梯度之间物种的替代率较高,物种的相似性较小。在群落的生物量方面,地上生物量随融雪的推迟而升高,地下生物量随融雪的推迟而下降,地上与地下生物量之总和随着融雪的推迟而下降,地下生物量与地上生物量之比随着融雪的推迟而下降。早融部位的地上生物量主要集中于地上0-10cm 的范围内,表明在早融部位植物地上部分有变矮的趋势;早融部位的地下生物量在土壤各深度分布相对较均一,而晚融部位地下生物量则主要集中于地下0-10cm 的范围内。生物量的变化趋势主要与雪场中各部位的土壤水分含量及地表日温度差异有关,是植物适应特定环境的结果。 To detect the plants’ responses to snow-cover gradients in an alpine meadow of eastern Tibetan plateau, laboratory method and field sample plot method were employed, and three gradeients (early-, medium and late-melting)were established in a natural snowbed. The measurements were carried out for two years and was done on three levels——individual, population and community. The results are shown as follows : From early- to late-melting gradients, daily ground temperature difference between day and night decreased, amplitude of freeze-thaw alternation weakened, soil organic matter contents and soluble K and Ca decreased, while soil water content increased. Total N, total P, total K,pH soluble N and soluble P kept constant from early- to late-melting portions. Among these factors, the changes of intense freeze-thaw alternation and soil water contents were considered as main factors affecting plants’ growth. From early- to late-melting portions, all phenological phases postponed, e.g. phase of plant emergence postponed almost twenty days. However, the same species’ individuals at different portions withered in step, which implied that the individuals at late-melting portion possessed shorter growing season length. Along the same gradient, both Carex atrofusca subsp. minor (Boott) T. Koyama and Astragalus fenzelianus Pet.-Stib. increased their individual growth, whereas Pedicularis longiflora Rudolph var. tubiformis (Klotz.) Tsoong and Pyrethrum tatsienense (Bur. et Franch.) Ling ex Shih. decreased their individual growth. Unlike the four plants mentioned above, Leontopodium longifolium L. did not show any evident change. As to reproductive charateristics, the flowers per individual, the number of seeds per flower, the thousand seed weight and the seed germination rate of Pedicularis davidii var. pentodon showed an increasing trend; and Polygonum macrophyllum D.Don also increased its thousand seed weight and seed germination rate along the same gradient. However, the other reproductive charateristics of Polygonum macrophyllum D.Don did not change significantly. At population level, the distribution pattern of several selected species changed from cluster pattern to random pattern as the snowmelt postponed. Overall association among the species changed from positive to negative along the same gradient. Further, interspecific association also changed evidently. Adverse circumstances such as intense freeze-thaw alternation were considered as primary factors resulting in changes of population distribution pattern and interspecific association. At the level of community, species diversity showed a pattern of a unimodal trend, i.e. the highest diversity occurred at medium snow depth,perhaps because of intense freeze-thaw alternation at early-melting portions and the shortest growing season at late-melting portions. Almost all species that only appeared at one snowmelt portion occurred at medium portion, indicating that medium snow depth was more suitable for many species’ survival. Species replacement from one snowmelt portion to its neighboring portion seldom took place. However, while distance between two portions became farther, species replacement between the two portions occurred more frequently. As for biomass, aboveground biomass increased from early- to late-melting portions, whereas belowground biomass, total biomass and the ratio of belowground to aboveground all decreased along the same snow gradient. A majority of aboveground biomass distributed in a height range of 0-10 cm, suggesting that height of plants inhabiting early-melting portion be shorter compared with other portions. In addition, belowground biomass at early-melting portion was evenly distributed at different soil depth in comparison with aboveground biomass, whereas belowground biomass at late-melting portion concentrated 0-10cm soil layer below ground. The changing trend of biomass was also related to two factors. One was soil water content, and the other topsoil temperature difference between day and night.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two species, Artemisia frigida Willd. (C-3, semishrub, and dominant on overgrazed sites) and Cleistogenes squarrosa (Trin.) Keng (C-4, perennial bunchgrass, and dominant or codominant on moderately grazed sites) were studied to determine the effects of defoliation, nitrogen (N) availability, competition, and their interactions on growth, biomass, and N allocation in a greenhouse experiment. The main treatments were: two nitrogen levels (NO = 0 mg N pot(-1), N1 = 60 mg N pot(-1)), two defoliation intensities (removing 60% of total aboveground biomass and no defoliation), and three competitive replacement series (monocultures of each species and mixtures at 0.5:0.5). Our results were inconsistent with our hypothesis on the adaptive mechanisms of A. frigida regarding the interactive effects of herbivory, N, and competition in determining its dominant position on overgrazed sites. Cleistogenes squarrosa will be replaced by A. frigida on over-grazed sites, although C. squarrosa had higher tolerance to defoliation than did A. frigida. Total biomass and N yield and N-15 recovery of C. squarrosa in mixed culture were consistently lower than in monocultures, whereas those of A. frigida grown in mixtures were consistently higher than in monocultures, suggesting higher competitive ability of A. frigida. Our results suggest that interspecific competitive ability may be of equal or greater importance than herbivory tolerance in determining herbivore-induced species replacement in semi-arid Inner Mongolian steppe. In addition, the dominance of A. frigida on overgrazed sites has been attributed to its ability to shift plant-plant interactions through (lap colonization, root niche differentiation, and higher resistance to water stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Empirical support for ‘invasional meltdown’, where the presence of one invading species facilitates another and compounds negative impacts on indigenous species, is equivocal with few convincing studies. In Ireland, the bank vole was introduced 80 years ago and now occupies a third of the island. The greater white-toothed shrew arrived more recently within the invasive range of the bank vole. We surveyed the abundance of both invasive species and two indigenous species, the wood mouse and pygmy shrew, throughout their respective ranges. The negative effects of invasive on indigenous species were strong and cumulative bringing about species replacement. The greater white-toothed shrew, the second invader, had a positive and synergistic effect on the abundance of the bank vole, the first invader, but a negative and compounding effect on the abundance of the wood mouse and occurrence of the pygmy shrew. The gradual replacement of the wood mouse by the bank vole decreased with distance from the point of the bank vole’s introduction whilst no pygmy shrews were captured where both invasive species were present. Such interactions may not be unique to invasions but characteristic of all multispecies communities. Small mammals are central in terrestrial food webs and compositional changes to this community in Ireland are likely to reverberate throughout the ecosystem. Vegetation composition and structure, invertebrate communities and the productivity of avian and mammalian predators are likely to be affected. Control of these invasive species may only be effected through landscape and habitat management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The European hare (Lepus europaeus) has declined throughout its native range but invaded numerous regions where it has negatively impacted native wildlife. In southern Sweden, it replaces the native mountain hare (L. timidus) through competition and hybridisation. We investigated temporal change in the invasive range of the European hare in Ireland, and compared its habitat use with the endemic Irish hare (L. timidus hibernicus). The range of the European hare was three times larger and its core range twice as large in 2012–2013 than in 2005. Its rate of radial range expansion was 0.73 km year−1 with its introduction estimated to have occurred ca. 1970. Both species utilised improved and rough grasslands and exhibited markedly similar regression coefficients with almost every land cover variable examined. Irish hares were associated with low fibre and high sugar content grass (good quality grazing) whilst the invader had a greater tolerance for low quality forage. European hares were associated with habitat patch edge density, suggesting it may be more suited to using hedgerows as diurnal resting sites than the Irish hare. Consequently, the invader had a wider niche breadth than the native but their niche overlap was virtually complete. Given the impact of the European hare on native species elsewhere, and its apparent pre-adaption for improved grasslands interspersed with arable land (a habitat that covers 70 % of Ireland), its establishment and range expansion poses a significant threat to the ecological security of the endemic Irish hare, particularly given their ecological similarities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biologia Animal - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tropical forests are experiencing an increase in the proportion of secondary forests as a result of the balance between the widespread harvesting of old-growth forests and the regeneration in abandoned areas. The impacts of such a process on biodiversity are poorly known and intensely debated. Recent reviews and multi-taxa studies indicate that species replacement in wildlife assemblages is a consistent pattern, sometimes stronger than changes in diversity, with a replacement from habitat generalists to old-growth specialists being commonly observed during tropical forest regeneration. However, the ecological drivers of such compositional changes are rarely investigated, despite its importance in assessing the conservation value of secondary forests, and to support and guide management techniques for restoration. By sampling 28 sites in a continuous Atlantic forest area in Southeastern Brazil, we assessed how important aspects of habitat structure and food resources for wildlife change across successional stages, and point out hypotheses on the implications of these changes for wildlife recovery. Old-growth areas presented a more complex structure at ground level (deeper leaf litter, and higher woody debris volume) and higher fruit availability from an understorey palm, whereas vegetation connectivity, ground-dwelling arthropod biomass, and total fruit availability were higher in earlier successional stages. From these results we hypothetize that generalist species adapted to fast population growth in resource-rich environments should proliferate and dominate earlier successional stages, while species with higher competitive ability in resource-limited environments, or those that depend on resources such as palm fruits, on higher complexity at the ground level, or on open space for flying, should dominate older-growth forests. Since the identification of the drivers of wildlife recovery is crucial for restoration strategies, it is important that future work test and further develop the proposed hypotheses. We also found structural and functional differences between old-growth forests and secondary forests with more than 80 years of regeneration, suggesting that restoration strategies may be crucial to recover structural and functional aspects expected to be important for wildlife in much altered ecosystems, such as the Brazilian Atlantic forest. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genes located on the mammalian Y chromosome outside of the pseudoautosomal region do not recombine with those on the X and are predicted to either undergo selection for male function or gradually degenerate because of an accumulation of deleterious mutations. Here, phylogenetic analyses of X-Y homologues, Zfx and Zfy, among 26 felid species indicate two ancestral episodes of directed genetic exchange (ectopic gene conversion) from X to Y: once during the evolution of pallas cat and once in a common predecessor of ocelot lineage species. Replacement of the more rapidly evolving Y homologue with the evolutionarily constrained X copy may represent a mechanism for adaptive editing of functional genes on the nonrecombining region of the mammalian Y chromosome.