978 resultados para Species persistence
Persistence and Non-target Impact of Imazapyr Associated with Smooth Cordgrass Control in an Estuary
Resumo:
The herbicide (±-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)- 5-oxo-1 H -imidazol-2-yl]-3-pyridinecarboxylic acid (imazapyr) has shown potential to control smooth cordgrass (Spartina alterniflora Loisel), a noxious weed in many estuaries throughout the world. Research was conducted under tidal estuary conditions in Willapa Bay, Washington, to determine imazapyr’s persistence and aquatic risk and impact to non-target estuary species. Persistence of imazapyr in water and sediment followed an exponential decay.(PDF has 6 pages.)
Resumo:
Species distribution models (SDMs) are increasingly used to predict environmentally induced range shifts of habitats of plant and animal species. Consequently SDMs are valuable tools for scientifically based conservation decisions. The aims of this paper are (1) to identify important drivers of butterfly species persistence or extinction, and (2) to analyse the responses of endangered butterfly species of dry grasslands and wetlands to likely future landscape changes in Switzerland. Future land use was represented by four scenarios describing: (1) ongoing land use changes as observed at the end of the last century; (2) a liberalisation of the agricultural markets; (3) a slightly lowered agricultural production; and (4) a strongly lowered agricultural production. Two model approaches have been applied. The first (logistic regression with principal components) explains what environmental variables have significant impact on species presence (and absence). The second (predictive SDM) is used to project species distribution under current and likely future land uses. The results of the explanatory analyses reveal that four principal components related to urbanisation, abandonment of open land and intensive agricultural practices as well as two climate parameters are primary drivers of species occurrence (decline). The scenario analyses show that lowered agricultural production is likely to favour dry grassland species due to an increase of non-intensively used land, open canopy forests, and overgrown areas. In the liberalisation scenario dry grassland species show a decrease in abundance due to a strong increase of forested patches. Wetland butterfly species would decrease under all four scenarios as their habitats become overgrown
Resumo:
A cornerstone of conservation is the designation and management of protected areas (PAs): locations often under conservation management containing species of conservation concern, where some development and other detrimental influences are prevented or mitigated. However, the value of PAs for conserving biodiversity in the long term has been questioned given that species are changing their distributions in response to climatic change. There is a concern that PAs may become climatically unsuitable for those species that they were designated to protect, and may not be located appropriately to receive newly-colonizing species for which the climate is improving. In the present study, we analyze fine-scale distribution data from detailed resurveys of seven butterfly and 11 bird species in Great Britain aiming to examine any effect of PA designation in preventing extinctions and promoting colonizations. We found a positive effect of PA designation on species' persistence at trailing-edge warm range margins, although with a decreased magnitude at higher latitudes and altitudes. In addition, colonizations by range expanding species were more likely to occur on PAs even after altitude and latitude were taken into account. PAs will therefore remain an important strategy for conservation. The potential for PA management to mitigate the effects of climatic change for retracting species deserves further investigation.
Resumo:
Conservation decision tools based on cost-effectiveness analysis are used to assess threat management strategies for improving species persistence. These approaches rank alternative strategies by their benefit to cost ratio but may fail to identify the optimal sets of strategies to implement under limited budgets because they do not account for redundancies. We devised a multi objective optimization approach in which the complementarity principle is applied to identify the sets of threat management strategies that protect the most species for any budget. We used our approach to prioritize threat management strategies for 53 species of conservation concern in the Pilbara, Australia. We followed a structured elicitation approach to collect information on the benefits and costs of implementing 17 different conservation strategies during a 3-day workshop with 49 stakeholders and experts in the biodiversity, conservation, and management of the Pilbara. We compared the performance of our complementarity priority threat management approach with a current cost-effectiveness ranking approach. A complementary set of 3 strategies: domestic herbivore management, fire management and research, and sanctuaries provided all species with >50% chance of persistence for $4.7 million/year over 20 years. Achieving the same result cost almost twice as much ($9.71 million/year) when strategies were selected by their cost-effectiveness ranks alone. Our results show that complementarity of management benefits has the potential to double the impact of priority threat management approaches.
Resumo:
Aim: To quantify the consequences of major threats to biodiversity, such as climate and land-use change, it is important to use explicit measures of species persistence, such as extinction risk. The extinction risk of metapopulations can be approximated through simple models, providing a regional snapshot of the extinction probability of a species. We evaluated the extinction risk of three species under different climate change scenarios in three different regions of the Mexican cloud forest, a highly fragmented habitat that is particularly vulnerable to climate change. Location: Cloud forests in Mexico. Methods: Using Maxent, we estimated the potential distribution of cloud forest for three different time horizons (2030, 2050 and 2080) and their overlap with protected areas. Then, we calculated the extinction risk of three contrasting vertebrate species for two scenarios: (1) climate change only (all suitable areas of cloud forest through time) and (2) climate and land-use change (only suitable areas within a currently protected area), using an explicit patch-occupancy approximation model and calculating the joint probability of all populations becoming extinct when the number of remaining patches was less than five. Results: Our results show that the extent of environmentally suitable areas for cloud forest in Mexico will sharply decline in the next 70 years. We discovered that if all habitat outside protected areas is transformed, then only species with small area requirements are likely to persist. With habitat loss through climate change only, high dispersal rates are sufficient for persistence, but this requires protection of all remaining cloud forest areas. Main conclusions: Even if high dispersal rates mitigate the extinction risk of species due to climate change, the synergistic impacts of changing climate and land use further threaten the persistence of species with higher area requirements. Our approach for assessing the impacts of threats on biodiversity is particularly useful when there is little time or data for detailed population viability analyses. © 2013 John Wiley & Sons Ltd.
Resumo:
1. In conservation decision-making, we operate within the confines of limited funding. Furthermore, we often assume particular relationships between management impact and our investment in management. The structure of these relationships, however, is rarely known with certainty - there is model uncertainty. We investigate how these two fundamentally limiting factors in conservation management, money and knowledge, impact optimal decision-making. 2. We use information-gap decision theory to find strategies for maximizing the number of extant subpopulations of a threatened species that are most immune to failure due to model uncertainty. We thus find a robust framework for exploring optimal decision-making. 3. The performance of every strategy decreases as model uncertainty increases. 4. The strategy most robust to model uncertainty depends not only on what performance is perceived to be acceptable but also on available funding and the time horizon over which extinction is considered. 5. Synthesis and applications. We investigate the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that subpopulation triage can be a natural consequence of robust decision-making. We highlight the need for managers to consider triage not as merely giving up, but as a tool for ensuring species persistence in light of the urgency of most conservation requirements, uncertainty and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park. © 2008 The Authors.
Resumo:
Decision-making for conservation is conducted within the margins of limited funding. Furthermore, to allocate these scarce resources we make assumptions about the relationship between management impact and expenditure. The structure of these relationships, however, is rarely known with certainty. We present a summary of work investigating the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that achieving robustness in conservation decisions can require a triage approach, and emphasize the need for managers to consider triage not as surrendering but as rational decision making to ensure species persistence in light of the urgency of the conservation problems, uncertainty, and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park, Indonesia. To conserve our environment, conservation managers must make decisions in the face of substantial uncertainty. Further, they must deal with the fact that limitations in budgets and temporal constraints have led to a lack of knowledge on the systems we are trying to preserve and on the benefits of the actions we have available (Balmford & Cowling 2006). Given this paucity of decision-informing data there is a considerable need to assess the impact of uncertainty on the benefit of management options (Regan et al. 2005). Although models of management impact can improve decision making (e.g.Tenhumberg et al. 2004), they typically rely on assumptions around which there is substantial uncertainty. Ignoring this 'model uncertainty', can lead to inferior decision-making (Regan et al. 2005), and potentially, the loss of the species we are trying to protect. Current methods used in ecology allow model uncertainty to be incorporated into the model selection process (Burnham & Anderson 2002; Link & Barker 2006), but do not enable decision-makers to assess how this uncertainty would change a decision. This is the basis of information-gap decision theory (info-gap); finding strategies most robust to model uncertainty (Ben-Haim 2006). Info-gap has permitted conservation biology to make the leap from recognizing uncertainty to explicitly incorporating severe uncertainty into decision-making. In this paper we present a summary of McDonald-Madden et al (2008a) who use an info-gap framework to address the impact of uncertainty in the functional representations of biological systems on conservation decision-making. Furthermore, we highlight the importance of two key elements limiting conservation decision-making - funding and knowledge - and how they interact to influence the best management strategy for a threatened species. Copyright © ASCE 2011.
Resumo:
In ecosystems driven by water availability, plant community dynamics depend on complex interactions between vegetation, hydrology, and human water resources use. Along ephemeral rivers—where water availability is erratic—vegetation and people are particularly vulnerable to changes in each other's water use. Sensible management requires that water supply be maintained for people, while preserving ecosystem health. Meeting such requirements is challenging because of the unpredictable water availability. We applied information gap decision theory to an ecohydrological system model of the Kuiseb River environment in Namibia. Our aim was to identify the robustness of ecosystem and water management strategies to uncertainties in future flood regimes along ephemeral rivers. We evaluated the trade-offs between alternative performance criteria and their robustness to uncertainty to account for both (i) human demands for water supply and (ii) reducing the risk of species extinction caused by water mining. Increasing uncertainty of flood regime parameters reduced the performance under both objectives. Remarkably, the ecological objective (species coexistence) was more sensitive to uncertainty than the water supply objective. However, within each objective, the relative performance of different management strategies was insensitive to uncertainty. The ‘best’ management strategy was one that is tuned to the competitive species interactions in the Kuiseb environment. It regulates the biomass of the strongest competitor and, thus, at the same time decreases transpiration, thereby increasing groundwater storage and reducing pressure on less dominant species. This robust mutually acceptable strategy enables species persistence without markedly reducing the water supply for humans. This study emphasises the utility of ecohydrological models for resource management of water-controlled ecosystems. Although trade-offs were identified between alternative performance criteria and their robustness to uncertain future flood regimes, management strategies were identified that help to secure an ecologically sustainable water supply.
Resumo:
Ongoing habitat loss and fragmentation threaten much of the biodiversity that we know today. As such, conservation efforts are required if we want to protect biodiversity. Conservation budgets are typically tight, making the cost-effective selection of protected areas difficult. Therefore, reserve design methods have been developed to identify sets of sites, that together represent the species of conservation interest in a cost-effective manner. To be able to select reserve networks, data on species distributions is needed. Such data is often incomplete, but species habitat distribution models (SHDMs) can be used to link the occurrence of the species at the surveyed sites to the environmental conditions at these locations (e.g. climatic, vegetation and soil conditions). The probability of the species occurring at unvisited location is next predicted by the model, based on the environmental conditions of those sites. The spatial configuration of reserve networks is important, because habitat loss around reserves can influence the persistence of species inside the network. Since species differ in their requirements for network configuration, the spatial cohesion of networks needs to be species-specific. A way to account for species-specific requirements is to use spatial variables in SHDMs. Spatial SHDMs allow the evaluation of the effect of reserve network configuration on the probability of occurrence of the species inside the network. Even though reserves are important for conservation, they are not the only option available to conservation planners. To enhance or maintain habitat quality, restoration or maintenance measures are sometimes required. As a result, the number of conservation options per site increases. Currently available reserve selection tools do however not offer the ability to handle multiple, alternative options per site. This thesis extends the existing methodology for reserve design, by offering methods to identify cost-effective conservation planning solutions when multiple, alternative conservation options are available per site. Although restoration and maintenance measures are beneficial to certain species, they can be harmful to other species with different requirements. This introduces trade-offs between species when identifying which conservation action is best applied to which site. The thesis describes how the strength of such trade-offs can be identified, which is useful for assessing consequences of conservation decisions regarding species priorities and budget. Furthermore, the results of the thesis indicate that spatial SHDMs can be successfully used to account for species-specific requirements for spatial cohesion - in the reserve selection (single-option) context as well as in the multi-option context. Accounting for the spatial requirements of multiple species and allowing for several conservation options is however complicated, due to trade-offs in species requirements. It is also shown that spatial SHDMs can be successfully used for gaining information on factors that drive a species spatial distribution. Such information is valuable to conservation planning, as better knowledge on species requirements facilitates the design of networks for species persistence. This methods and results described in this thesis aim to improve species probabilities of persistence, by taking better account of species habitat and spatial requirements. Many real-world conservation planning problems are characterised by a variety of conservation options related to protection, restoration and maintenance of habitat. Planning tools therefore need to be able to incorporate multiple conservation options per site, in order to continue the search for cost-effective conservation planning solutions. Simultaneously, the spatial requirements of species need to be considered. The methods described in this thesis offer a starting point for combining these two relevant aspects of conservation planning.
Resumo:
The Iberian Peninsula is recognized as an important refugial area for species survival and diversification during the climatic cycles of the Quaternary. Recent phylogeographic studies have revealed Iberia as a complex of multiple refugia. However, most of these studies have focused either on species with narrow distributions within the region or species groups that, although widely distributed, generally have a genetic structure that relates to pre-Quaternary cladogenetic events. In this study we undertake a detailed phylogeographic analysis of the lizard species, Lacerta lepida, whose distribution encompasses the entire Iberian Peninsula. We attempt to identify refugial areas, recolonization routes, zones of secondary contact and date demographic events within this species. Results support the existence of 6 evolutionary lineages (phylogroups) with a strong association between genetic variation and geography, suggesting a history of allopatric divergence in different refugia. Diversification within phylogroups is concordant with the onset of the Pleistocene climatic oscillations. The southern regions of several phylogroups show a high incidence of ancestral alleles in contrast with high incidence of recently derived alleles in northern regions. All phylogroups show signs of recent demographic and spatial expansions. We have further identified several zones of secondary contact, with divergent mitochondrial haplotypes occurring in narrow zones of sympatry. The concordant patterns of spatial and demographic expansions detected within phylogroups, together with the high incidence of ancestral haplotypes in southern regions of several phylogroups, suggests a pattern of contraction of populations into southern refugia during adverse climatic conditions from which subsequent northern expansions occurred. This study supports the emergent pattern of multiple refugia within Iberia but adds to it by identifying a pattern of refugia coincident with the southern distribution limits of individual evolutionary lineages. These areas are important in terms of long-term species persistence and therefore important areas for conservation.
Resumo:
The greatest common threat to birds in Madagascar has historically been from anthropogenic deforestation. During recent decades, global climate change is now also regarded as a significant threat to biodiversity. This study uses Maximum Entropy species distribution modeling to explore how potential climate change could affect the distribution of 17 threatened forest endemic bird species, using a range of climate variables from the Hadley Center's HadCM3 climate change model, for IPCC scenario B2a, for 2050. We explore the importance of forest cover as a modeling variable and we test the use of pseudo-presences drawn from extent of occurrence distributions. Inclusion of the forest cover variable improves the models and models derived from real-presence data with forest layer are better predictors than those from pseudo-presence data. Using real-presence data, we analyzed the impacts of climate change on the distribution of nine species. We could not predict the impact of climate change on eight species because of low numbers of occurrences. All nine species were predicted to experience reductions in their total range areas, and their maximum modeled probabilities of occurrence. In general, species range and altitudinal contractions follow the reductive trend of the Maximum presence probability. Only two species (Tyto soumagnei and Newtonia fanovanae) are expected to expand their altitude range. These results indicate that future availability of suitable habitat at different elevations is likely to be critical for species persistence through climate change. Five species (Eutriorchis astur, Neodrepanis hypoxantha, Mesitornis unicolor, Euryceros prevostii, and Oriola bernieri) are probably the most vulnerable to climate change. Four of them (E. astur, M. unicolor, E. prevostii, and O. bernieri) were found vulnerable to the forest fragmentation during previous research. Combination of these two threats in the future could negatively affect these species in a drastic way. Climate change is expected to act differently on each species and it is important to incorporate complex ecological variables into species distribution models.
Resumo:
Many countries have conservation plans for threatened species, but such plans have generally been developed without taking into account the potential impacts of climate change. Here, we apply a decision framework, specifically developed to identify and prioritise climate change adaptation actions and demonstrate its use for 30 species threatened in the UK. Our aim is to assess whether government conservation recommendations remain appropriate under a changing climate. The species, associated with three different habitats (lowland heath, broadleaved woodland and calcareous grassland), were selected from a range of taxonomic groups (primarily moths and vascular plants, but also including bees, bryophytes, carabid beetles and spiders). We compare the actions identified for these threatened species by the decision framework with those included in existing conservation plans, as developed by the UK Government's statutory adviser on nature conservation. We find that many existing conservation recommendations are also identified by the decision framework. However, there are large differences in the spatial prioritisation of actions when explicitly considering projected climate change impacts. This includes recommendations for actions to be carried out in areas where species do not currently occur, in order to allow them to track movement of suitable conditions for their survival. Uncertainties in climate change projections are not a reason to ignore them. Our results suggest that existing conservation plans, which do not take into account potential changes in suitable climatic conditions for species, may fail to maximise species persistence. Comparisons across species also suggest a more habitat-focused approach could be adopted to enable climate change adaptation for multiple species.
Resumo:
Recent global assessments have shown the limited coverage of protected areas across tropical biotas, fuelling a growing interest in the potential conservation services provided by anthropogenic landscapes. Here we examine the geographic distribution of biological diversity in the Atlantic Forest of South America, synthesize the most conspicuous forest biodiversity responses to human disturbances, propose further conservation initiatives for this biota, and offer a range of general insights into the prospects of forest species persistence in human-modified tropical forest landscapes worldwide. At the biome scale, the most extensive pre-Columbian habitats across the Atlantic Forest ranged across elevations below 800 masl, which still concentrate most areas within the major centers of species endemism. Unfortunately, up to 88% of the original forest habitat has been lost, mainly across these low to intermediate elevations, whereas protected areas are clearly skewed towards high elevations above 1200 masl. At the landscape scale, most remaining Atlantic Forest cover is embedded within dynamic agro-mosaics including elements such as small forest fragments, early-to-late secondary forest patches and exotic tree mono-cultures. In this sort of aging or long-term modified landscapes, habitat fragmentation appears to effectively drive edge-dominated portions of forest fragments towards an early-successional system, greatly limiting the long-term persistence of forest-obligate and forest-dependent species. However, the extent to which forest habitats approach early-successional systems, thereby threatening the bulk of the Atlantic Forest biodiversity, depends on both past and present landscape configuration. Many elements of human-modified landscapes (e.g. patches of early-secondary forests and tree mono-cultures) may offer excellent conservation opportunities, but they cannot replace the conservation value of protected areas and hitherto unprotected large patches of old-growth forests. Finally, the biodiversity conservation services provided by anthropogenic landscapes across Atlantic Forest and other tropical forest regions can be significantly augmented by coupling biodiversity corridor initiatives with biota-scale attempts to plug existing gaps in the representativeness of protected areas. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
One of the main consequences of habitat loss and fragmentation is the increase in patch isolation and the consequent decrease in landscape connectivity. In this context, species persistence depends on their responses to this new landscape configuration, particularly on their capacity to move through the interhabitat matrix. Here, we aimed first to determine gap-crossing probabilities related to different gap widths for two forest birds (Thamnophilus caerulescens, Thamnophilidae, and Basileuterus culicivorus, Parulidae) from the Brazilian Atlantic rainforest. These values were defined with a playback technique and then used in analyses based on graph theory to determine functional connections among forest patches. Both species were capable of crossing forest gaps between patches, and these movements were related to gap width. The probability of crossing 40 m gaps was 50% for both species. This probability falls to 10% when the gaps are 60 m (for B. culicivorus) or 80 m (for T caerulescens). Actually, birds responded to stimulation about two times more distant inside forest trials (control) than in gap-crossing trials. Models that included gap-crossing capacity improved the explanatory power of species abundance variation in comparison to strictly structural models based merely on patch area and distance measurements. These results highlighted that even very simple functional connectivity measurements related to gap-crossing capacity can improve the understanding of the effect of habitat fragmentation on bird occurrence and abundance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)