859 resultados para Spawning migration
Resumo:
Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for spawning. However, what triggers and drives the geographic shift of the population remains unclear and poorly understood. An individual-based fish model has been implemented to explore the potential mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish response to its dynamic environment. A bioenergetics model was used to represent individual growth and reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to actualize a series of simulations using different cues and computational assumptions. The gradient detection behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested that southward movement occurred more actively from early April to middle May following favorably the spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who ended up in the southern part of the bay presented better condition based on energy content, proposing the resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a moderate performance, producing distribution pattern with the highest spread. Finally, model performance was not significantly affected by changes on the starting date, initial fish distribution and number of particles used in the simulations, whereas it was drastically influenced by the adopted cues.
Resumo:
Dissertação de mestrado em Ecology
Resumo:
I modeled the cumulative impact of hydroelectric projects with and without commercial fishing weirs and water-control dams on the production, survival to the sea, and potential fecundity of migrating female silver-phase American eels, Anguilla rostrata in the Kennebec River basin, Maine, This river basin has 22 hydroelectric projects, 73 water-control dams, and 15 commercial fishing weir sites. The modeled area included an 8,324 km(2) segment of the drainage area between Merrymeeting Bay and the upper limit of American eel distribution in the basin. One set of input,, (assumed or real values) concerned population structure (Le., population density and sex ratio changes throughout the basin, female length-class distribution, and drainage area between dams), Another set concerned factors influencing survival and potential fecundity of migrating American eels (i.e., pathway sequences through projects, survival rate per project by length-class. and length-fecundity relationship). Under baseline conditions about 402,400 simulated silver female American eels would be produced annually reductions in their numbers due to dams and weirs would reduce the realized fecundity (i.e., the number of eggs produced by all females that survived the migration). Without weirs or water-control dams, about 63% of the simulated silverphase American eels survived their freshwater spawning migration run to the sea when the survival rate at each hydroelectric dam was 9017, 40% survived at 80% survival per dam, and 18% survived at 60% survival per dam. Removing the lowermost hydroelectric dam on the Kennebec River increased survival by 6.0-7.6% for the basin. The efficient commercial weirs reduced survival to the sea to 69-76%( of what it would have been without weirs', regardless of survival rates at hydroelectric dams. Water-control dams had little impact on production in this basin because most were located in the upper reaches of tributaries. Sensitivity analysis led to the conclusion that small changes in population density and female length distribution had greater effects on survival and realized fecundity than similar changes in turbine survival rate. The latter became more important as turbine survival rate decreased. Therefore, it might be more fruitful to determine population distribution in basins of interest than to determine mortality rate at each hydroelectric project.
Resumo:
Growth histories of yellow-phase American eels Anguilla rostrata collected in four rivers in Maine, were back-calculated from sagittal otolith increments. Our objectives were to first determine whether sexually dimorphic growth rates exist and then compare the growth histories of American eels from four rivers within a geographic region. For female eels, the maximum growth rate was 31.9 +/- 1.7 mm/year at age 8, decreasing to 25.1 +/- 2.9 mm/year at age 14. Males attained a maximum of 29.8 +/- 1.6 min/year at age 3, decreasing to a minimum of 17.9 +/- 1.3 mm/year at age 11. Females grew faster than males after age 4 and had a slower reduction in growth rate with age. These faster growth rates among females were similar in all four rivers. The observed growth rates are not consistent with current life history hypotheses and may indicate an alternative life history strategy. Because female eels benefit from a larger size (i.e., size refuge, increased fecundity, and greater niche breadth), they would benefit from a higher-risk growth strategy that increases growth rate during their earlier years and reduces the amount of time spent in an unfavorable size-class. The tradeoffs (i.e., mortality, developmental rate, pathogen resistance, and longevity) associated with this faster growth rate may not favor the males' life history requirements. Male eels do not achieve the size of females and therefore are not subject to the advantages associated with being larger. Therefore, they may use a risk-averse strategy that maintains submaximum growth rates to obtain the minimum size necessary to mature and complete the spawning migration while reducing the adverse affects of faster growth rates. We postulate that, in eels, intrinsic growth rates should be considered a life history trait that has evolved to meet the life history requirements of each sex.
Resumo:
Bonefish (Albula spp.) support an economically important catch-and-release recreational fishery, as well as artisanal harvesting, in The Bahamas. Little is known about the large-scale movement patterns of bonefish, yet such information is essential for proper species conservation and management. ^ I used acoustic telemetry to determine large-scale movement patterns of bonefish around Andros, Bahamas, in conjunction with presumed spawning migrations. I conclude that bonefish travel long distances from shallow flats to pre-spawning aggregation sites in proximity to off-shore reef locations. Off-shore movement to deeper reef locations occurs around both new and full moons. This study has also confirmed anecdotal reports that the North Bight is an important spawning migration corridor for bonefish. ^ This information is critical for the protection of bonefish and identifies important habitats (e.g. migration corridors and pre-spawning aggregations) on Andros that warrant protection from coastal degradation or fishing pressures. ^
Resumo:
Bonefish (Albula spp.) support an economically important catch-and-release recreational fishery, as well as artisanal harvesting, in The Bahamas. Little is known about the large-scale movement patterns of bonefish, yet such information is essential for proper species conservation and management. I used acoustic telemetry to determine large-scale movement patterns of bonefish around Andros, Bahamas, in conjunction with presumed spawning migrations. I conclude that bonefish travel long distances from shallow flats to pre-spawning aggregation sites in proximity to off-shore reef locations. Off-shore movement to deeper reef locations occurs around both new and full moons. This study has also confirmed anecdotal reports that the North Bight is an important spawning migration corridor for bonefish. This information is critical for the protection of bonefish and identifies important habitats (e.g. migration corridors and pre-spawning aggregations) on Andros that warrant protection from coastal degradation or fishing pressures.
Resumo:
Since 1966 especially recent decade, Caspian trout (Salmo trutta caspius Kessler, 1877) considered as a strategic endemic species for Caspian Sea fisheries resources also coldwater aquaculture in Iran. Nowadays habitat condition effects on this subspecies during life stages, artificial breeding and incubation period noticed by research and execution sessions of fisheries in Iran. Incubation duration of Caspian trout from artificial fertilization followed by green egg and eyed egg, hatching and yolk sac absorption identified as most sensitive stages for fish and any pollution, stress and deviation by natural life conditions of embryo up to larvae could provide possible mortalities and observable or hidden alterations. Among all vital factors for Caspian trout welfare even in conservation plans and stocks rehabilitation programs or recent attempts for domestication of this fish for introduction to cold water aquaculture industry, water temperature as the most important physical factor which might conserve or induce stress to rearing environment condition is not considered yet. In hatcheries activities, the temperature for incubation and rearing Caspian trout eggs is determining by available water temperature and wide range of temperatures in governmental or private farms is using depend on the water resources availability. Also global climate change consideration and increase temperature trend accompany with group of physical and chemical factors provided by fish farm discharges and other source points entered to the migration pathway of Caspian trout in spawning season were not investigated before. Natural spawning migration pathway is upstream of Caspian tout south and south west rivers especially in Cheshmehkileh upstream in Tonekabon, Iran directed this research focus on the mentioned location. For simulation of natural spawning bed for Caspian trout, water supplied from the upstream of Daryasar branch as headwater of Cheshmehkileh River which provided REDD water condition for in vitro incubation. Green eggs treatments of wild and F1 cultured brooders both 3+ were incubated. Incubation implemented in dark, constant temperature (4, 8, 12 degree centigrade) and DO–pH–temperature digital monitoring in 3 recycling incubators ended to yolk sac absorption and entering larval stage. Hatching success, possible genome alterations by HSP70 gene expression and comet assay implemented as diagnostic tools in 3 life stages of eyed egg– Alevin and Larvae. Numbers and diameters of larvae white fiber muscles measured by histology experiment and Hematoxylin–eosine staining. Results stated significant effect of incubation temperature on hatching success, genome and white fiber muscles of wild and F1 samples. Hatching success measured as 31% and 38% for cultured and wild cold treatments, 79% and 91% for normal and 64% and 73% for warm cultured and wild treatments respectively. Considerable mortality occurred for cold treatment and 8 degree centigrade stated the best thermal condition in normal incubator according to hatching success in wild Caspian trout samples.
Resumo:
Sea lamprey (Petromyzon marinus) and allis shad (Alosa alosa) have been fished for centuries in mainland Portugal during their upstream spawning migration. Here, biological information is compared for the two species and governance and monitoring data from Portugal are reviewed to propose species-specific courses of future action. Despite a national fisheries legislation common for the two species and the designation of Sites of Community Interest (SCIs) for both, the current conservation needs for sea lamprey and allis shad in Portugal are considered to be distinct. For sea lamprey, conservation priorities must focus on planning fisheries managementinarticulationwithhabitatrecoverytoguaranteecost-effective monitoring andsustainablelong-termexploitationthataddsvaluetolocalcommunitiesandpaysdue taxation. Onthecontrary,conservationconcernsandactionsforallisshadmuststrengthenandbemore proactive in the reduction of fishing mortality, both target (in rivers) and by catch (at sea).There is a need to make better use of the opportunities inherent in the Habitats Directive and the possibility to define specific management actions within SCIs. To this effect, it will be necessary to revise existing legislation and guarantee better articulation between jurisdictional authorities. A good example in this direction is the articulation already established in the river Mondego where habitat restoration, fish monitoring and effective species-specific fisheries control measures have been taken and implemented in recent years by a large institutional partnership.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
AbstractThis study evaluates the effectiveness of two fish passes at two hydropower dams (Canoas I and II) in the Upper Parana basin, which form part of a cascade of three reservoirs. Fish from 12 migratory species (3089 specimens) were captured during their ascending, reproductive migration and were tagged with hydrostatic tags. The recapture data (294 specimens over two consecutive years) showed that there is a strong tendency for the maintenance of ascending migration through reservoirs with fish passes but with differences in migratory activity within the same species. No eggs, larvae or juveniles of these species were found in samples collected over 5 years in the reservoirs above the fish passes. These data suggest that fish passes have contributed to the restoration of the migratory routes of adult fish but that in the absence of suitable spawning or nursery habitats for these species; they probably act as ecological traps and do not contribute to the recruitment of the species.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Portunid crabs are an important resource in estuaries, and require appropriate management to guarantee their long-term availability. We investigated the population dynamics and reproduction of Callinectes danae in the Estuarine-Bay Complex of Sao Vicente, Sao Paulo, Brazil, to provide basic biological information for public policies for the management of this fishery. Monthly samples were obtained from March 2007 to February 2008 on eight transects, four in the estuary and four in the bay. A total of 2261 specimens (403 males, 1288 females, of which 570 were ovigerous) were collected. Males were significantly larger than females, and the size-frequency distribution was unimodal for males, females and ovigerous females. The sex ratio was nearly always skewed toward females (M:F - 1:4.6). C. danae showed seasonal-continuous reproduction, with high reproductive activity in the warmer season. C. danae breeds in the estuarine-bay complex, with males and juvenile females concentrated in the estuary. After copulation, fertilized females migrate to the estuary entrance and the bay, where ovigerous females are commonly found spawning in high-salinity areas. Therefore, to manage this important economic resource, both the estuary and the bay should be considered for protection, but special attention should be given to the estuary entrance during the summer months, when ovigerous females concentrate.
Resumo:
Animal migration is an amazing phenomenon that has fascinated humans for long. Many freshwater fishes also show remarkable migrations, whereof the spectacular mass migrations of salmonids from the spawning streams are the most well known and well studied. However, recent studies have shown that migration occurs in a range of freshwater fish taxa from many different habitats. In this review we focus on the causes and consequences of migration in freshwater fishes. We start with an introduction of concepts and categories of migration, and then address the evolutionary causes that drive individuals to make these migratory journeys. The basis for the decision of an individual fish to migrate or stay resident is an evaluation of the costs and benefits of different strategies to maximize its lifetime reproductive effort. We provide examples by discussing our own work on the causes behind seasonal migration in a cyprinid fish, roach (Rutilus rutilus (L., 1758)), within this framework. We then highlight different adaptations that allow fish to migrate over sometimes vast journeys across space, including capacity for orientation, osmoregulation, and efficient energy expenditure. Following this we consider the consequences of migration in freshwater fish from ecological, evolutionary, and conservation perspectives, and finally, we detail some of the recent developments in the methodologies used to collect data on fish migration and how these could be used in future research.