999 resultados para Spatiotemporal characteristics
Resumo:
The Huangtupo landslide is one of the largest in the Three Gorges region, China. The county-seat town of Badong, located on the south shore between the Xiling and Wu gorges of the Yangtze River, was moved to this unstable slope prior to the construction of the Three Gorges Project, since the new Three Gorges reservoir completely submerged the location of the old city. The instability of the slope is affecting the new town by causing residential safety problems. The Huangtupo landslide provides scientists an opportunity to understand landslide response to fluctuating river water level and heavy rainfall episodes, which is essential to decide upon appropriate remediation measures. Interferometric Synthetic Aperture Radar (InSAR) techniques provide a very useful tool for the study of superficial and spatially variable displacement phenomena. In this paper, three sets of radar data have been processed to investigate the Huangtupo landslide. Results show that maximum displacements are affecting the northwest zone of the slope corresponding to Riverside slumping mass I#. The other main landslide bodies (i.e. Riverside slumping mass II#, Substation landslide and Garden Spot landslide) exhibit a stable behaviour in agreement with in situ data, although some active areas have been recognized in the foot of the Substation landslide and Garden Spot landslide. InSAR has allowed us to study the kinematic behaviour of the landslide and to identify its active boundaries. Furthermore, the analysis of the InSAR displacement time-series has helped recognize the different displacement patterns on the slope and their relationships with various triggering factors. For those persistent scatterers, which exhibit long-term displacements, they can be decomposed into a creep model (controlled by geological conditions) and a superimposed recoverable term (dependent on external factors), which appears closely correlated with reservoir water level changes close to the river's edge. These results, combined with in situ data, provide a comprehensive analysis of the Huangtupo landslide, which is essential for its management.
Resumo:
In this paper we consider whether the behaviour of the neural circuitry that controls lower limb movements in humans is shaped primarily by the spatiotemporal characteristics of bipedal gait patterns, or by selective pressures that are sensitive to considerations of balance and energetics. During the course of normal locomotion, the full dynamics of the neural circuitry are masked by the inertial properties of the limbs. In the present study, participants executed bipedal movements in conditions in which their feet were either unloaded or subject to additional inertial loads. Two patterns of rhythmic coordination were examined. In the in-phase mode, participants were required to flex their ankles and extend their ankles in synchrony. In the out-of-phase mode, the participants flexed one ankle while extending the other and vice versa. The frequency of movement was increased systematically throughout each experimental trial. All participants were able to maintain both the in-phase and the out-of-phase mode of coordination, to the point at which they could no longer increase their frequency of movement. Transitions between the two modes were not observed, and the stability of the out-of-phase and in-phase modes of coordination was equivalent at all movement frequencies. These findings indicate that, in humans, the behaviour of the neural circuitry underlying coordinated movements of the lower limbs is not constrained strongly by the spatiotemporal symmetries of bipedal gait patterns.
Resumo:
During the last decade, the discovery that astrocytes possess a nonelectrical form of excitability (Ca21-excitability) that leads to the release of chemical transmitters, an activity called ''gliotransmission'', indicates that these cells may have additional important roles in brain function. Elucidating the stimulus-secretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. Here by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we investigated the spatiotemporal characteristics of stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes. We performed the analysis at both the whole-cell and single-vesicle levels providing the first system for comparing exo-endocytic processes in astrocytes with those in neurons. Both the time course and modalities of secretion in astrocytes present more similarities to neurons then previously expected. We found that 1. the G-protein-coupled receptor (GPCR)-evoked exocytosis reached the maximum on a ms time scale and that 2. ER tubuli formed sub-micrometer domains beneath the plasma membrane in close proximity to exocytic vesicles, where fusion events were spatiotemporally correlated with fast Ca21 events.
Resumo:
The application of adaptive antenna techniques to fixed-architecture base stations has been shown to offer wide-ranging benefits, including interference rejection capabilities or increased coverage and spectral efficiency.Unfortunately, the actual implementation ofthese techniques to mobile communication scenarios has traditionally been set back by two fundamental reasons. On one hand, the lack of flexibility of current transceiver architectures does not allow for the introduction of advanced add-on functionalities. On the other hand, theoften oversimplified models for the spatiotemporal characteristics of the radio communications channel generally give rise toperformance predictions that are, in practice, too optimistic. The advent of software radio architectures represents a big step toward theintroduction of advanced receive/transmitcapabilities. Thanks to their inherent flexibilityand robustness, software radio architecturesare the appropriate enabling technology for theimplementation of array processing techniques.Moreover, given the exponential progression ofcommunication standards in coexistence andtheir constant evolution, software reconfigurabilitywill probably soon become the only costefficientalternative for the transceiverupgrade. This article analyzes the requirementsfor the introduction of software radio techniquesand array processing architectures inmultistandard scenarios. It basically summarizesthe conclusions and results obtained withinthe ACTS project SUNBEAM,1 proposingalgorithms and analyzing the feasibility ofimplementation of innovative and softwarereconfigurablearray processing architectures inmultistandard settings.
Resumo:
In this study, we implement chronic optical imaging of intrinsic signals in rat barrel cortex and repeatedly quantify the functional representation of a single whisker over time. The success of chronic imaging for more than 1 month enabled an evaluation of the normal dynamic range of this sensory representation. In individual animals for a period of several weeks, we found that: (i) the average spatial extent of the quantified functional representation of whisker C2 is surprisingly large--1.71 mm2 (area at half-height); (ii) the location of the functional representation is consistent; and (iii) there are ongoing but nonsystematic changes in spatiotemporal characteristics such as the size, shape, and response amplitude of the functional representation. These results support a modified description of the functional organization of barrel cortex, where although a precisely located module corresponds to a specific whisker, this module is dynamic, large, and overlaps considerably with the modules of many other whiskers.
Resumo:
Theoretical developments on pinning control of complex dynamical networks have mainly focused on the deterministic versions of the model dynamics. However, the dynamical behavior of most real networks is often affected by stochastic noise components. In this paper the pinning control of a stochastic version of the coupled map lattice network with spatiotemporal characteristics is studied. The control of these complex dynamical networks have functional uncertainty which should be considered when calculating stabilizing control signals. Two feedback control methods are considered: the conventional feedback control and modified stochastic feedback control. It is shown that the typically-used conventional control method suffers from the ignorance of model uncertainty leading to a reduction and potentially a collapse in the control efficiency. Numerical verification of the main result is provided for a chaotic coupled map lattice network. © 2011 IEEE.
Resumo:
Abstract: INTRODUCTION : Several municipalities of the Western region of the State of São Paulo have been affected by human visceral leishmaniasis (HVL), including the City of Adamantina, where the first autochthonous cases occurred in 2004. Therefore, this study aimed to describe the spatial and spatiotemporal occurrence of HVL in Adamantina. METHODS : Secondary data regarding the occurrence of HVL in Adamantina between 2004 and 2011 were used. Incidence, mortality, and case fatality rates were calculated. We used local empirical Bayesian incidence rates to represent the occurrence of the disease in the census sector of the city. The existence of spatial and spatiotemporal clusters of cases was evaluated using scan statistics. In situ observation was performed to assess the socioeconomic and environmental characteristics of the areas with medium and high incidences. RESULTS : Adamantina reported cases in 70% of its census sectors. No differences were observed between sexes. The group aged 0-4 years presented the highest incidence and mortality rates, and the group aged 40-59 years presented the highest fatality rate. We detected a spatiotemporal cluster, which coincided with the commencement of the endemic in the city. CONCLUSIONS : The individuals most affected by the disease were children. The disease was present in areas with better and worse socioeconomic conditions. The use of spatial analysis techniques was important to achieve the study objectives.
Resumo:
To understand how tree growth has responded to recent climate warming, an understanding of the tree-climate-site complex is necessary. To achieve this, radial growth variability among 204 trees established before 1850 was studied in relation to both climatic and site factors. Seventeen forest stands were sampled in the Spanish Central Pyrenees. Three species were studied: Pinus uncinata, Abies alba, and Pinus sylvestris. For each tree, a ring-width residual chronology was built. All trees cross-dated well, indicating a common influence of the regional climate. For the 1952-1993 period, the radial growth of all species, especially P. uncinata, was positively correlated with warm Novembers during the year before ring formation and warm Mays of the year the annual ring formed. Differences in species-stand elevation modulated the growth-climate associations. Radial growth in P. uncinata at high elevation sites was reduced when May temperatures were colder and May precipitation more abundant. In the 20th century, two contrasting periods in radial growth were observed: one (1900-1949) with low frequency of narrow and wide rings, low mean annual sensitivity, and low common growth variation; and another (1950-1994) with the reverse characteristics. The increased variability in radial growth since the 1950s was observed for all species and sites, which suggests a climatic cause. The low shared variance among tree chronologies during the first half of the 20th century may result from a"relaxation" of the elevation gradient, allowing local site conditions to dominate macroclimatic influence. These temporal trends may be related to the recently reported increase of climatic variability and warmer conditions. This study emphasizes the need to carefully assess the relationships between radial growth and site conditions along ecological gradients to improve dendroclimatic reconstructions.
Resumo:
The management and conservation of coastal waters in the Baltic is challenged by a number of complex environmental problems, including eutrophication and habitat degradation. Demands for a more holistic, integrated and adaptive framework of ecosystem-based management emphasize the importance of appropriate information on the status and changes of the aquatic ecosystems. The thesis focuses on the spatiotemporal aspects of environmental monitoring in the extensive and geomorphologically complex coastal region of SW Finland, where the acquisition of spatially and temporally representative monitoring data is inherently challenging. Furthermore, the region is subject to multiple human interests and uses. A holistic geographical approach is emphasized, as it is ultimately the physical conditions that set the frame for any human activity. Characteristics of the coastal environment were examined using water quality data from the database of the Finnish environmental administration and Landsat TM/ETM+ images. A basic feature of the complex aquatic environment in the Archipelago Sea is its high spatial and temporal variability; this foregrounds the importance of geographical information as a basis of environmental assessments. While evidence of a consistent water turbidity pattern was observed, the coastal hydrodynamic realm is also characterized by high spatial and temporal variability. It is therefore also crucial to consider the spatial and temporal representativeness of field monitoring data. Remote sensing may facilitate evaluation of hydrodynamic conditions in the coastal region and the spatial extrapolation of in situ data despite their restrictions. Additionally, remotely sensed images can be used in the mapping of many of those coastal habitats that need to be considered in environmental management. With regard to surface water monitoring, only a small fraction of the currently available data stored in the Hertta-PIVET register can be used effectively in scientific studies and environmental assessments. Long-term consistent data collection from established sampling stations should be emphasized but research-type seasonal assessments producing abundant data should also be encouraged. Thus a more comprehensive coordination of field work efforts is called for. The integration of remote sensing and various field measurement techniques would be especially useful in the complex coastal waters. The integration and development of monitoring system in Finnish coastal areas also requires further scientific assesement of monitoring practices. A holistic approach to the gathering and management of environmental monitoring data could be a cost-effective way of serving a multitude of information needs, and would fit the holistic, ecosystem-based management regimes that are currently being strongly promoted in Europe.
Resumo:
The knowledge on the optics of fogbows is scarce, and their polarization characteristics have never been measured to our knowledge. To fill this gap we measured the polarization features of 16 fogbows during the Beringia 2005 Arctic polar research expedition by imaging polarimetry in the red, green and blue spectral ranges. We present here the first polarization patterns of the fogbow. In the patterns of the degree of linear polarization p, fogbows and their supernumerary bows are best visible in the red spectral range due to the least dilution of fogbow light by light scattered in air. In the patterns of the angle of polarization α fogbows are practically not discernible because their α-pattern is the same as that of the sky: the direction of polarization is perpendicular to the plane of scattering and is parallel to the arc of the bow, independently of the wavelength. Fogbows and their supernumeraries were best seen in the patterns of the polarized radiance. In these patterns the angular distance δ between the peaks of the primary and the first supernumerary and the angular width σ of the primary bow were determined along different radii from the center of the bow. δ ranged between 6.08° and 13.41° , while σ changed from 5.25° to 19.47° . Certain fogbows were relatively homogeneous, meaning small variations of δ and σ along their bows. Other fogbows were heterogeneous, possessing quite variable δ- and σ-values along their bows. This variability could be a consequence of the characteristics of the high Arctic with open waters within the ice shield resulting in the spatiotemporal change of the droplet size within the fog
Resumo:
The term urban heat island (UHI) refers to the common situation in which the city is warmer than its rural surroundings. In this dissertation, the local climate, and especially the UHI, of the coastal city of Turku (182,000 inh.), SW Finland, was studied in different spatial and temporal scales. The crucial aim was to sort out the urban, topographical and water body impact on temperatures at different seasons and times of the day. In addition, the impact of weather on spatiotemporal temperature differences was studied. The relative importance of environmental factors was estimated with different modelling approaches and a large number of explanatory variables with various spatial scales. The city centre is the warmest place in the Turku area. Temperature excess relative to the coldest sites, i.e. rural areas about 10 kilometers to the NE from the centre, is on average 2 °C. Occasionally, the UHI intensity can be even 10 °C. The UHI does not prevail continuously in the Turku area, but occasionally the city centre can be colder than its surroundings. Then the term urban cool island or urban cold island (UCI) is used. The UCI is most common in daytime in spring and in summer, whereas during winter the UHI prevails throughout the day. On average, the spatial temperature differences are largest in summer, whereas the single extreme values are often observed in winter. The seasonally varying sea temperature causes the shift of relatively warm areas towards the coast in autumn and inland in spring. In the long term, urban land use was concluded to be the most important factor causing spatial temperature differences in the Turku area. The impact was mainly a warming one. The impact of water bodies was emphasised in spring and autumn, when the water temperature was relatively cold and warm, respectively. The impact of topography was on average the weakest, and was seen mainly in proneness of relatively low-lying places for cold air drainage during night-time. During inversions, however, the impact of topography was emphasised, occasionally outperforming those of urban land use and water bodies.
Resumo:
In coastal waters, physico-chemical and biological properties and constituents vary at different time scales. In the study area of this thesis, within the Archipelago Sea in the northern Baltic Sea, seasonal cycles of light and temperature set preconditions for intra-annual variations, but developments at other temporal scales occur as well. Weather-induced runoffs and currents may alter water properties over the short term, and the consequences over time of eutrophication and global changes are to a degree unpredictable. The dynamic characteristics of northern Baltic Sea waters are further diversified at the archipelago coasts. Water properties may differ in adjacent basins, which are separated by island and underwater thresholds limiting water exchange, making the area not only a mosaic of islands but also one of water masses. Long-term monitoring and in situ observations provide an essential data reserve for coastal management and research. Since the seasonal amplitudes of water properties are so high, inter-annual comparisons of water-quality variables have to be based on observations sampled at the same time each year. In this thesis I compare areas by their temporal characteristics, using both inter-annual and seasonal data. After comparing spatial differences in seasonal cycles, I conclude that spatial comparisons and temporal generalizations have to be made with caution. In classifying areas by the state of their waters, the results may be biased even if the sampling is annually simultaneous, since the dynamics of water properties may vary according to the area. The most comprehensive view of the spatiotemporal dynamics of water properties would be achieved by means of comparisons with data consisting of multiple annual samples. For practical reasons, this cannot be achieved with conventional in situ sampling. A holistic understanding of the spatiotemporal features of the water properties of the Archipelago Sea will have to be based on the application of multiple methods, complementing each other’s spatial and temporal coverage. The integration of multi-source observational data and time-series analysis may be methodologically challenging, but it will yield new information as to the spatiotemporal regime of the Archipelago Sea.
Resumo:
This study was aimed at to characterize the spatio-temporal trends in the distributional characteristics of various species of nitrogen and phosphorus as well as to elucidate the factors and processes aflecting these nutrients in the dissolved, particulate and sedimentary phases of a river estuarine system. The main area of study is Chalakudy river in Kerala, which is a fresh water system originating from Anamalai hills and ending at Arabian Sea. Its basin is between I00 05 ’ to I00 35’ North latitude and 76” 15 ’ to 760 55’ East longitude. Being a riparian bufler zone, the dynamics of nutrient mobility tend to be more complex and variable in this river-estuarine system.The diflerent species of nitrogen estimated from the filtrate were nitrite-N, nitrateN, ammonia-N, urea-N, total nitrogen and residual nitrogen. The diflerent forms of phosphorus estimated from the filtrate were phosphate-P, total-P and residualP. Pre weighed sediments as well as particulate matter were analysed for quantijying nitrite-N, nitrate-N, ammonia-N and urea-N. Total nitrogen was estimated after digestion with potassium persulfate. Fractionation of phosphorus in sediment/particulate matter was performed by applying sequential extraction procedure. The dijferent forms of phosphorus thus estimated were loosely bound (exchangeable) P, Fe/Al bound P, polyphosphates, Ca bound P and refractory P. Sedimental total P was also measured directly by applying digestion method.The analyses carried out in this bimonthly annual survey have revealed specific information on the latent factors influencing the water quality pattern ofthe river. There was dependence among the chemical components of the river sediment and suspended matter, reflecting the water quality. A period of profound environmental change occurred and changes in various species had been noted in association with seasonal variations in the waterway, especially following enhanced river runoff during the monsoon. The results also successfully represented the distribution trend of nutrients during the rainy as well as dry season. Thus, the information gathered in this work will also be beneficial for those interested or involved in river management, conservation, regulation and policy making in regional and national levels.
Resumo:
Present study is focused on the spatiotemporal variation of the microbial population (bacteria, fungus and actinomycetes) in the grassland soils of tropical montane forest and its relation with important soil physico-chemical characteristics and nutrients. Different physico-chemical properties of the soil such as temperature, moisture content, organic carbon, available nitrogen, available phosphorous and available potassium have been studied. Results of the present study revealed that both microbial load and soil characteristics showed spatiotemporal variation. Microbial population of the grassland soils were characterized by high load of bacteria followed by fungus and actinomycetes. Microbial load was high during pre monsoon season, followed by post monsoon and monsoon. The microbial load varied with important soil physico-chemical properties and nutrients. Organic carbon content, available nitrogen and available phosphorous were positively correlated with bacterial load and the correlation is significant at 0.05 and 0.01 levels respectively. Available nitrogen and available phosphorous were positively correlated with fungus at 0.05 level significance. Moisture content was negatively correlated with actinomycetes at 0.01 level of significance. Organic carbon negatively correlated with actinomycetes load at 0.05 level of significance
Resumo:
We compare the characteristics of synthetic European droughts generated by the HiGEM1 coupled climate model run with present day atmospheric composition with observed drought events extracted from the CRU TS3 data set. The results demonstrate consistency in both the rate of drought occurrence and the spatiotemporal structure of the events. Estimates of the probability density functions for event area, duration and severity are shown to be similar with confidence > 90%. Encouragingly, HiGEM is shown to replicate the extreme tails of the observed distributions and thus the most damaging European drought events. The soil moisture state is shown to play an important role in drought development. Once a large-scale drought has been initiated it is found to be 50% more likely to continue if the local soil moisture is below the 40th percentile. In response to increased concentrations of atmospheric CO2, the modelled droughts are found to increase in duration, area and severity. The drought response can be largely attributed to temperature driven changes in relative humidity. 1 HiGEM is based on the latest climate configuration of the Met Office Hadley Centre Unified Model (HadGEM1) with the horizontal resolution increased to 1.25 x 0.83 degrees in longitude and latitude in the atmosphere and 1/3 x 1/3 degrees in the ocean.