1000 resultados para Spatiotemporal Dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to determine seasonal variation and vertical distribution of the soil rotifer assemblage in a climax beech forest in South Bohemia. During 2005, soil rotifer was investigated to the species level. Soil samples of 10 cm² and 10 cm in depth were divided into five layers, which were processed separately. Thirty one rotifer species were identified during the investigation. Dominant species significantly changed throughout the seasons. The most abundant species were Encentrum arvicola and Wierzejskiella vagneri among the monogononts, and Adineta steineri, Ceratotrocha cornigera, Habrotrocha filum, Habrotrocha ligula, Macrotrachela plicata, Mniobia tentans, Mniobia incrassata and Mniobia granulosa among the bdelloids. Mean Shannon diversity index varied from 1.99 to 2.63. Total rotifer abundance varied from 212±63 to 513±127 10³ individuals m-2 along the year, with the highest numbers found in May, and the lowest in July. The great part of the community was concentrated in the upper (fresh litter) and second (partially decomposed litter) layers and significantly decreased in the soil vertical profile on all sampling dates. The highest rotifer density of 43 individuals g-1 was found in the upper layer in May.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescence microscopy has enabled the analysis of both the spatial distribution of DNA damage and its dynamics during the DNA damage response (DDR). Three microscopic techniques can be used to study the spatiotemporal dynamics of DNA damage. In the first part we describe how we determine the position of DNA double-strand breaks (DSBs) relative to the nuclear envelope. The second part describes how to quantify the co-localization of DNA DSBs with nuclear pore clusters, or other nuclear subcompartments. The final protocols describe methods for the quantification of locus mobility over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social networks are static illustrations of dynamic societies, within which social interactions are constantly changing. Fundamental sources of variation include ranging behaviour and temporal demographic changes. Spatiotemporal dynamics can favour or limit opportunities for individuals to interact, and then a network may not essentially represent social processes. We examined whether a social network can embed such nonsocial effects in its topology, whereby emerging modules depict spatially or temporally segregated individuals. To this end, we applied a combination of spatial, temporal and demographic analyses to a long-term study of the association patterns of Guiana dolphins, Sotalia guianensis. We found that association patterns are organized into a modular social network. Space use was unlikely to reflect these modules, since dolphins' ranging behaviour clearly overlapped. However, a temporal demographic turnover, caused by the exit/entrance of individuals (most likely emigration/immigration), defined three modules of associations occurring at different times. Although this factor could mask real social processes, we identified the temporal scale that allowed us to account for these demographic effects. By looking within this turnover period (32 months), we assessed fission-fusion dynamics of the poorly known social organization of Guiana dolphins. We highlight that spatiotemporal dynamics can strongly influence the structure of social networks. Our findings show that hypothetical social units can emerge due to the temporal opportunities for individuals to interact. Therefore, a thorough search for a satisfactory spatiotemporal scale that removes such nonsocial noise is critical when analysing a social system. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting with an overview on losses due to mountain hazards in the Russian Federation and the European Alps, the question is raised why a substantial number of events still are recorded—despite considerable efforts in hazard mitigation and risk reduction. The main reason for this paradox lies in a missing dynamic risk-based approach, and it is shown that these dynamics have different roots: firstly, neglecting climate change and systems dynamics, the development of hazard scenarios is based on the static approach of design events. Secondly, due to economic development and population dynamics, the elements at risk exposed are subject to spatial and temporal changes. These issues are discussed with respect to temporal and spatial demands. As a result, it is shown how risk is dynamic on a long-term and short-term scale, which has to be acknowledged in the risk concept if this concept is targeted at a sustainable development of mountain regions. A conceptual model is presented that can be used for dynamical risk assessment, and it is shown by different management strategies how this model may be converted into practice. Furthermore, the interconnectedness and interaction between hazard and risk are addressed in order to enhance prevention, the level of protection and the degree of preparedness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the dynamics of guanosine 3′,5′-cyclic monophosphate (cGMP) in single living cells, we constructed genetically encoded, fluorescent cGMP indicators by bracketing cGMP-dependent protein kinase (cGPK), minus residues 1–77, between cyan and yellow mutants of green fluorescent protein. cGMP decreased fluorescence resonance energy transfer (FRET) and increased the ratio of cyan to yellow emissions by up to 1.5-fold with apparent dissociation constants of ≈2 μM and >100:1 selectivity for cGMP over cAMP. To eliminate constitutive kinase activity, Thr516 of cGPK was mutated to Ala. Emission ratio imaging of the indicators transfected into rat fetal lung fibroblast (RFL)-6 showed cGMP transients resulting from activation of soluble and particulate guanylyl cyclase, respectively, by nitric oxide (NO) and C-type natriuretic peptide (CNP). Whereas all naive cells tested responded to CNP, only 68% responded to NO. Both sets of signals showed large and variable (0.5–4 min) latencies. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) did not elevate cGMP on its own but consistently amplified responses to NO or CNP, suggesting that basal activity of guanylate cyclase is very low and emphasizing the importance of PDEs in cGMP recycling. A fraction of RFL cells showed slowly propagating tides of cGMP spreading across the cell in response to delocalized application of NO. Biolistically transfected Purkinje neurons showed cGMP responses to parallel fiber activity and NO donors, confirming that single-cell increases in cGMP occur under conditions appropriate to cause synaptic plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge accessing from external organisations is important to firms, especially entrepreneurial ones which often cannot generate internally all the knowledge necessary for innovation. There is, however, a lack of evidence concerning the association between the evolution of firms and the evolution of their networks. The aim of this paper is to begin to fill this gap by undertaking an exploratory analysis of the relationship between the vintage of firms and their knowledge sourcing networks. Drawing on an analysis of firms in the UK, the paper finds some evidence of a U-shaped relationship existing between firm age and the frequency of accessing knowledge from certain sources. Emerging entrepreneurial firms tend to be highly active with regard to accessing knowledge for a range of sources and geographic locations, with the rate of networking dropping somewhat during the period of peak firm growth. For instance, it is found that firms tend to less frequently access knowledge sources such as universities and research institutes in their own region during a stage of peak turnover growth. Overall, the results suggest a complex relationship between the lifecycle of the firm and its networking patterns. It is concluded that policymakers need to become more aware that network formation and utilisation by firms is likely to vary dependent upon their lifecycle position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multifunctional calcium/calmodulin dependent protein kinases (CaMKs) are key regulators of spine structural plasticity and long-term potentiation (LTP) in neurons. CaMKs have promiscuous and overlapping substrate recognition motifs, and are distinguished in their regulatory role based on differences in the spatiotemporal dynamics of activity. While the function and activity of CaMKII in synaptic plasticity has been extensively studied, that of CaMKI, another major class of CaMK required for LTP, still remain elusive.

Here, we develop a Förster’s Resonance Energy Transfer (FRET) based sensor to measure the spatiotemporal activity dynamics of CaMK1. We monitored CaMKI activity using 2-photon fluorescence lifetime imaging, while inducing LTP in single dendritic spines of rat (Rattus Norvegicus, strain Sprague Dawley) hippocampal CA1 pyramidal neurons using 2-photon glutamate uncaging. Using RNA-interference and pharmacological means, we also characterize the role of CaMKI during spine structural plasticity.

We found that CaMKI was rapidly and transiently activated with a rise time of ~0.3 s and decay time of ~1 s in response to each uncaging pulse. Activity of CaMKI spread out of the spine. Phosphorylation of CaMKI by CaMKK was required for this spreading and for the initial phase of structural LTP. Combined with previous data showing that CaMKII is restricted to the stimulated spine and required for long-term maintenance of structural LTP, these results suggest that CaMK diversity allows the same incoming signal – calcium – to independently regulate distinct phases of LTP by activating different CaMKs with distinct spatiotemporal dynamics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In coastal waters, physico-chemical and biological properties and constituents vary at different time scales. In the study area of this thesis, within the Archipelago Sea in the northern Baltic Sea, seasonal cycles of light and temperature set preconditions for intra-annual variations, but developments at other temporal scales occur as well. Weather-induced runoffs and currents may alter water properties over the short term, and the consequences over time of eutrophication and global changes are to a degree unpredictable. The dynamic characteristics of northern Baltic Sea waters are further diversified at the archipelago coasts. Water properties may differ in adjacent basins, which are separated by island and underwater thresholds limiting water exchange, making the area not only a mosaic of islands but also one of water masses. Long-term monitoring and in situ observations provide an essential data reserve for coastal management and research. Since the seasonal amplitudes of water properties are so high, inter-annual comparisons of water-quality variables have to be based on observations sampled at the same time each year. In this thesis I compare areas by their temporal characteristics, using both inter-annual and seasonal data. After comparing spatial differences in seasonal cycles, I conclude that spatial comparisons and temporal generalizations have to be made with caution. In classifying areas by the state of their waters, the results may be biased even if the sampling is annually simultaneous, since the dynamics of water properties may vary according to the area. The most comprehensive view of the spatiotemporal dynamics of water properties would be achieved by means of comparisons with data consisting of multiple annual samples. For practical reasons, this cannot be achieved with conventional in situ sampling. A holistic understanding of the spatiotemporal features of the water properties of the Archipelago Sea will have to be based on the application of multiple methods, complementing each other’s spatial and temporal coverage. The integration of multi-source observational data and time-series analysis may be methodologically challenging, but it will yield new information as to the spatiotemporal regime of the Archipelago Sea.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using the recently-developed mean–variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, an analysis is presented of the spatiotemporal dynamics of their perturbations, showing how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. In particular, a divide is seen between ensembles based on singular vectors or empirical orthogonal functions, and those based on bred vector, Ensemble Transform with Rescaling or Ensemble Kalman Filter techniques. Consideration is also given to the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. Finally, the use of the MVL technique to assist in selecting models for inclusion in a multi-model ensemble is discussed, and an experiment suggested to test its potential in this context.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cortical dynamics can be imaged at high spatiotemporal resolution with voltage-sensitive dyes (VSDs) and calcium-sensitive dyes (CaSDs). We combined these two imaging techniques using epifluorescence optics together with whole cell recordings to measure the spatiotemporal dynamics of activity in the mouse somatosensory barrel cortex in vitro and in the supragranular layers in vivo. The two optical signals reported distinct aspects of cortical function. VSD fluorescence varied linearly with membrane potential and was dominated by subthreshold postsynaptic potentials, whereas the CaSD signal predominantly reflected local action potential firing. Combining VSDs and CaSDs allowed us to monitor the synaptic drive and the spiking activity of a given area at the same time in the same preparation. The spatial extent of the two dye signals was different, with VSD signals spreading further than CaSD signals, reflecting broad subthreshold and narrow suprathreshold receptive fields. Importantly, the signals from the dyes were differentially affected by pharmacological manipulations, stimulation strength, and depth of isoflurane anesthesia. Combined VSD and CaSD measurements can therefore be used to specify the temporal and spatial relationships between subthreshold and suprathreshold activity of the neocortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: INTRODUCTION This study presents two decades of epidemiological data on tuberculosis (TB), in order to understanding the disease profile and its spatiotemporal dynamics. METHODS This descriptive study was performed in the City of Olinda/Pernambuco, Brazil, from 1991-2010, and it analyzed new patients with TB living in the city. We used the χ²-test with a p-value <0.05 to identify differences in trends. Incidence and cluster distribution were identified using spatial scan statistics. RESULTS In total, 6202 new cases were recorded during the two decades. The highest incidence occurred in 1995 (110 cases/100,000 inhabitants), and the lowest occurred in 2009 (65 cases/100,000 inhabitants) (β=-1.44; R²=0.43; p=0.0018). The highest mortality occurred in 1998 (16 deaths/100,000 inhabitants), and the lowest occurred in 2008 (5 deaths/100,000 inhabitants) (β=-0.19; R²=0.17; p=0.07). There was a male predominance (65%), and ages ranged from 20-49 years (65%). There was a substantial increase in the number of patients that were cured after treatment (60% to 67%; p<0.001) as well as those tested for HIV (1.9% to 58.5%; p<0.001). During the first decade, clusters with p-values <0.05 included 29% of the total notified cases, and in the second decade, that percentage was 12%. CONCLUSIONS We observed a decreasing trend in incidence, which was significant, and mortality rates, which was not significant. The increased number of laboratory tests performed reflects advances in surveillance, and a reduction in the proportion of cases in primary clusters suggests, among other things, that the disease is spreading across the region.