934 resultados para Spatially Expanding Populations
Resumo:
Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.
Resumo:
Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.
Resumo:
Animals can often coordinate their actions to achieve mutually beneficial outcomes. However, this can result in a social dilemma when uncertainty about the behavior of partners creates multiple fitness peaks. Strategies that minimize risk ("risk dominant") instead of maximizing reward ("payoff dominant") are favored in economic models when individuals learn behaviors that increase their payoffs. Specifically, such strategies are shown to be "stochastically stable" (a refinement of evolutionary stability). Here, we extend the notion of stochastic stability to biological models of continuous phenotypes at a mutation-selection-drift balance. This allows us to make a unique prediction for long-term evolution in games with multiple equilibria. We show how genetic relatedness due to limited dispersal and scaled to account for local competition can crucially affect the stochastically-stable outcome of coordination games. We find that positive relatedness (weak local competition) increases the chance the payoff dominant strategy is stochastically stable, even when it is not risk dominant. Conversely, negative relatedness (strong local competition) increases the chance that strategies evolve that are neither payoff nor risk dominant. Extending our results to large multiplayer coordination games we find that negative relatedness can create competition so extreme that the game effectively changes to a hawk-dove game and a stochastically stable polymorphism between the alternative strategies evolves. These results demonstrate the usefulness of stochastic stability in characterizing long-term evolution of continuous phenotypes: the outcomes of multiplayer games can be reduced to the generic equilibria of two-player games and the effect of spatial structure can be analyzed readily.
Resumo:
Niche construction, by which organisms modify the environment in which they live, has been proposed to affect the evolution of many phenotypic traits. But what about the evolution of a niche constructing trait itself, whose expression changes the pattern of natural selection to which the trait is exposed in subsequent generations? This article provides an inclusive fitness analysis of selection on niche constructing phenotypes, which can affect their environment from local to global scales in arbitrarily spatially subdivided populations. The model shows that phenotypic effects of genes extending far beyond the life span of the actor can be affected by natural selection, provided they modify the fitness of those individuals living in the future that are likely to have inherited the niche construction lineage of the actor. Present benefits of behaviors are thus traded off against future indirect costs. The future costs will generally result from a complicated interplay of phenotypic effects, population demography and environmental dynamics. To illustrate these points, I derive the adaptive dynamics of a trait involved in the consumption of an abiotic resource, where resource abundance in future generations feeds back to the evolutionary dynamics of the trait.
Resumo:
Many models proposed to study the evolution of collective action rely on a formalism that represents social interactions as n-player games between individuals adopting discrete actions such as cooperate and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-player games games in spatially structured populations has so far proved elusive. We address this problem by considering mixed strategies and by integrating discrete-action n-player games into the direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable strategies and to capture the effect of population structure by a single structure coefficient, namely, the pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical framework to investigate collective action problems associated with the provision of three different kinds of collective goods, paradigmatic of a vast array of helping traits in nature: "public goods" (both providers and shirkers can use the good, e.g., alarm calls), "club goods" (only providers can use the good, e.g., participation in collective hunting), and "charity goods" (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different ways depending on the kind of collective good and its economies of scale. Our findings highlight the importance of explicitly accounting for relatedness, the kind of collective good, and the economies of scale in theoretical and empirical studies of the evolution of collective action.
Resumo:
Summary (in English) Computer simulations provide a practical way to address scientific questions that would be otherwise intractable. In evolutionary biology, and in population genetics in particular, the investigation of evolutionary processes frequently involves the implementation of complex models, making simulations a particularly valuable tool in the area. In this thesis work, I explored three questions involving the geographical range expansion of populations, taking advantage of spatially explicit simulations coupled with approximate Bayesian computation. First, the neutral evolutionary history of the human spread around the world was investigated, leading to a surprisingly simple model: A straightforward diffusion process of migrations from east Africa throughout a world map with homogeneous landmasses replicated to very large extent the complex patterns observed in real human populations, suggesting a more continuous (as opposed to structured) view of the distribution of modern human genetic diversity, which may play a better role as a base model for further studies. Second, the postglacial evolution of the European barn owl, with the formation of a remarkable coat-color cline, was inspected with two rounds of simulations: (i) determine the demographic background history and (ii) test the probability of a phenotypic cline, like the one observed in the natural populations, to appear without natural selection. We verified that the modern barn owl population originated from a single Iberian refugium and that they formed their color cline, not due to neutral evolution, but with the necessary participation of selection. The third and last part of this thesis refers to a simulation-only study inspired by the barn owl case above. In this chapter, we showed that selection is, indeed, effective during range expansions and that it leaves a distinguished signature, which can then be used to detect and measure natural selection in range-expanding populations. Résumé (en français) Les simulations fournissent un moyen pratique pour répondre à des questions scientifiques qui seraient inabordable autrement. En génétique des populations, l'étude des processus évolutifs implique souvent la mise en oeuvre de modèles complexes, et les simulations sont un outil particulièrement précieux dans ce domaine. Dans cette thèse, j'ai exploré trois questions en utilisant des simulations spatialement explicites dans un cadre de calculs Bayésiens approximés (approximate Bayesian computation : ABC). Tout d'abord, l'histoire de la colonisation humaine mondiale et de l'évolution de parties neutres du génome a été étudiée grâce à un modèle étonnement simple. Un processus de diffusion des migrants de l'Afrique orientale à travers un monde avec des masses terrestres homogènes a reproduit, dans une très large mesure, les signatures génétiques complexes observées dans les populations humaines réelles. Un tel modèle continu (opposé à un modèle structuré en populations) pourrait être très utile comme modèle de base dans l'étude de génétique humaine à l'avenir. Deuxièmement, l'évolution postglaciaire d'un gradient de couleur chez l'Effraie des clocher (Tyto alba) Européenne, a été examiné avec deux séries de simulations pour : (i) déterminer l'histoire démographique de base et (ii) tester la probabilité qu'un gradient phénotypique, tel qu'observé dans les populations naturelles puisse apparaître sans sélection naturelle. Nous avons montré que la population actuelle des chouettes est sortie d'un unique refuge ibérique et que le gradient de couleur ne peux pas s'être formé de manière neutre (sans l'action de la sélection naturelle). La troisième partie de cette thèse se réfère à une étude par simulations inspirée par l'étude de l'Effraie. Dans ce dernier chapitre, nous avons montré que la sélection est, en effet, aussi efficace dans les cas d'expansion d'aire de distribution et qu'elle laisse une signature unique, qui peut être utilisée pour la détecter et estimer sa force.
Resumo:
Evolutionary graph theory has been proposed as providing new fundamental rules for the evolution of co-operation and altruism. But how do these results relate to those of inclusive fitness theory? Here, we carry out a retrospective analysis of the models for the evolution of helping on graphs of Ohtsuki et al. [Nature (2006) 441, 502] and Ohtsuki & Nowak [Proc. R. Soc. Lond. Ser. B Biol. Sci (2006) 273, 2249]. We show that it is possible to translate evolutionary graph theory models into classical kin selection models without disturbing at all the mathematics describing the net effect of selection on helping. Model analysis further demonstrates that costly helping evolves on graphs through limited dispersal and overlapping generations. These two factors are well known to promote relatedness between interacting individuals in spatially structured populations. By allowing more than one individual to live at each node of the graph and by allowing interactions to vary with the distance between nodes, our inclusive fitness model allows us to consider a wider range of biological scenarios leading to the evolution of both helping and harming behaviours on graphs.
Resumo:
Extinction, recolonization, and local adaptation are common in natural spatially structured populations. Understanding their effect upon genetic variation is important for systems such as genetically modified organism management or avoidance of drug resistance. Theoretical studies on the effect of extinction and recolonization upon genetic variance started appearing in the 1970s, but the role of local adaptation still has no good theoretical basis. Here we develop a model of a haploid species in a metapopulation in which a locally adapted beneficial allele is introduced. We study the effect of different spatial patterns of local adaptation, and different metapopulation dynamics, upon the fixation probability of the beneficial allele. Controlling for the average selection pressure, we find that a small area of positive selection can significantly increase the global probability of fixation. However, local adaptation becomes less important as extinction rate increases. Deme extinction and recolonization have a spatial smoothing effect that effectively reduces spatial variation in fitness.
Resumo:
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.
Resumo:
La variabilité génétique actuelle est influencée par une combinaison complexe de variables historiques et contemporaines. Dès lors, une interprétation juste de l’impact des processus actuels nécessite une compréhension profonde des processus historiques ayant influencé la variabilité génétique. En se basant sur la prémisse que des populations proches devraient partager une histoire commune récente, nombreuses études, effectuées à petite échelle spatiale, ne prennent pas en considération l’effet potentiel des processus historiques. Cette thèse avait pour but de vérifier la validité de cette prémisse en estimant l’effet de la dispersion historique à grande et à petite échelle spatiale. Le premier volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la répartition des organismes à grande échelle spatiale. Pour ce faire, les moules d’eau douce du genre flotteurs (Pyganodon spp.) ont servies de modèle biologique. Les moules d'eau douce se dispersent principalement au stade larvaire en tant que parasites des poissons. Une série de modèles nuls ont été développés pour évaluer la co-occurrence entre des parasites et leurs hôtes potenitels. Les associations distinctes du flotteur de Terre-Neuve (P. fragilis) avec des espèces de poissons euryhalins permettent d’expliquer sa répartition. Ces associations distinctes ont également pu favoriser la différenciation entre le flotteur de Terre-Neuve et son taxon soeur : le flotteur de l’Est (P. cataracta). Cette étude a démontré les effets des associations biologiques historiques sur les répartitions à grande échelle spatiale. Le second volet de cette thèse avait pour but d’évaluer l’impact de la dispersion historique sur la variabilité génétique, à petite échelle spatiale. Cette fois, différentes populations de crapet de roche (Ambloplites rupestris) et de crapet soleil (Lepomis gibbosus), dans des drainages adjacents ont servies de modèle biologique. Les différences frappantes observées entre les deux espèces suggèrent des patrons de colonisation opposés. La faible diversité génétique observée en amont des drainages et la forte différenciation observée entre les drainages pour les populations de crapet de roche suggèrent que cette espèce aurait colonisé les drainages à partir d'une source en aval. Au contraire, la faible différenciation et la forte diversité génétique observées en amont des drainages pour les populations de crapet soleil suggèrent une colonisation depuis l’amont, induisant du même coup un faux signal de flux génique entre les drainages. La présente étude a démontré que la dispersion historique peut entraver la capacité d'estimer la connectivité actuelle, à petite échelle spatiale, invalidant ainsi la prémisse testée dans cette thèse. Les impacts des processus historiques sur la variabilité génétique ne sont pas faciles à démontrer. Le troisième volet de cette thèse avait pour but de développer une méthode permettant de les détecter. La méthode proposée est très souple et favorise la comparaison entre la variabilité génétique et plusieurs hypothèses de dispersion. La méthode pourrait donc être utilisée pour comparer des hypothèses de dispersion basées sur le paysage historique et sur le paysage actuel et ainsi permettre l’évaluation des impacts historiques et contemporains sur la variabilité génétique. Les performances de la méthode sont présentées pour plusieurs scénarios de simulations, d’une complexité croissante. Malgré un impact de la différentiation globale, du nombre d’individus ou du nombre de loci échantillonné, la méthode apparaît hautement efficace. Afin d’illustrer le potentiel de la méthode, deux jeux de données empiriques très contrastés, publiés précédemment, ont été ré analysés. Cette thèse a démontré les impacts de la dispersion historique sur la variabilité génétique à différentes échelles spatiales. Les effets historiques potentiels doivent être pris en considération avant d’évaluer les impacts des processus écologiques sur la variabilité génétique. Bref, il faut intégrer l’évolution à l’écologie.
Resumo:
Mon étude vise à évaluer la propagation d’une zoonose en émergence au Québec, la maladie de Lyme, en conséquence du réchauffement climatique. Le pathogène responsable de cette infection, Borrelia burgdorferi, est transmis par l’intermédiaire d’une tique parasite, Ixodes scapularis, de plus en plus commune au Québec en raison de l’augmentation de la température moyenne du climat depuis les dernières décennies. Puisque la tique a une capacité de déplacement très restreinte, on s'attend à ce que sa dispersion soit liée à celle de son hôte primaire, soit la souris à pattes blanches (Peromyscus leucopus). Je décrirai donc d’abord les espèces impliquées, leur écologie et leur rôle dans ce système à trois niveaux (hôte/pathogène/vecteur). Puis, à l’aide de séquences d’ADN mitochondrial, je comparerai la phylogéographie des deux principales espèces de souris au Québec, la souris à pattes blanches et la souris sylvestre (P. maniculatus). Des analyses d’arbres et de réseaux d’haplotypes ont révélé des différences significatives dans la structure génétique et ainsi montré que les populations de P. leucopus seraient en expansion dans le sud du Québec. Cette étude nous a finalement permis d’émettre des hypothèses sur le patron d’établissement de la maladie de Lyme au Québec.
Resumo:
Nested clade phylogeographic analysis (NCPA) is a popular method for reconstructing the demographic history of spatially distributed populations from genetic data. Although some parts of the analysis are automated, there is no unique and widely followed algorithm for doing this in its entirety, beginning with the data, and ending with the inferences drawn from the data. This article describes a method that automates NCPA, thereby providing a framework for replicating analyses in an objective way. To do so, a number of decisions need to be made so that the automated implementation is representative of previous analyses. We review how the NCPA procedure has evolved since its inception and conclude that there is scope for some variability in the manual application of NCPA. We apply the automated software to three published datasets previously analyzed manually and replicate many details of the manual analyses, suggesting that the current algorithm is representative of how a typical user will perform NCPA. We simulate a large number of replicate datasets for geographically distributed, but entirely random-mating, populations. These are then analyzed using the automated NCPA algorithm. Results indicate that NCPA tends to give a high frequency of false positives. In our simulations we observe that 14% of the clades give a conclusive inference that a demographic event has occurred, and that 75% of the datasets have at least one clade that gives such an inference. This is mainly due to the generation of multiple statistics per clade, of which only one is required to be significant to apply the inference key. We survey the inferences that have been made in recent publications and show that the most commonly inferred processes (restricted gene flow with isolation by distance and contiguous range expansion) are those that are commonly inferred in our simulations. However, published datasets typically yield a richer set of inferences with NCPA than obtained in our random-mating simulations, and further testing of NCPA with models of structured populations is necessary to examine its accuracy.
Resumo:
Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations. © 2013 Fonseca et al.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Expanding populations of resident Canada geese that remain in suburban and urban areas year-round often result in increased conflicts with humans. Non-lethal and humane means are needed for managing the size of Canada goose flocks residing near or on airports, golf courses, industrial parks, government sites, and city parks. A side effect of nicarbazin, a veterinary drug used to control coccidiosis in chickens, is decreased egg production and hatching. Exploiting this side effect, studies of nicarbazin for reducing the hatchability of eggs from Canada geese were conducted. An initial study in Coturnix quail verified reduction in hatchability in a species other than chickens. Because plasma nicarbazin was not routinely measured, a study in chickens was conducted to determine the relationship between plasma and egg nicarbazin. A comparative study in chickens, mallards, and Canada geese showed that nicarbazin absorption was lowest in geese. Studies in both penned and wild Canada geese showed that reduction in hatchability was possible but neither study used bait suitable for general field application. Bait development led to the OvoControl-G® (Innolytics LLC) bait, which resulted in reduction in hatchability of 51% at treated sites compared to control sites in the field. Previous studies showed that nicarbazin is practically non-toxic and is environmentally friendly; timing and management of baiting will minimize non-target hazards. OvoControl-G® 2500 ppm nicarbazin bait is recommended for incorporation into a comprehensive management plan as a reproductive inhibitor for use in controlling resident Canada goose flock sizes.