943 resultados para Spatial-temporal stability
Resumo:
In broader catchment scale investigations, there is a need to understand and ultimately exploit the spatial variation of agricultural crops for an improved economic return. In many instances, this spatial variation is temporally unstable and may be different for various crop attributes and crop species. In the Australian sugar industry, the opportunity arose to evaluate the performance of 231 farms in the Tully Mill area in far north Queensland using production information on cane yield (t/ha) and CCS ( a fresh weight measure of sucrose content in the cane) accumulated over a 12-year period. Such an arrangement of data can be expressed as a 3-way array where a farm x attribute x year matrix can be evaluated and interactions considered. Two multivariate techniques, the 3-way mixture method of clustering and the 3-mode principal component analysis, were employed to identify meaningful relationships between farms that performed similarly for both cane yield and CCS. In this context, farm has a spatial component and the aim of this analysis was to determine if systematic patterns in farm performance expressed by cane yield and CCS persisted over time. There was no spatial relationship between cane yield and CCS. However, the analysis revealed that the relationship between farms was remarkably stable from one year to the next for both attributes and there was some spatial aggregation of farm performance in parts of the mill area. This finding is important, since temporally consistent spatial variation may be exploited to improve regional production. Alternatively, the putative causes of the spatial variation may be explored to enhance the understanding of sugarcane production in the wet tropics of Australia.
Resumo:
The study was carried out on the main plots of a large grassland biodiversity experiment (the Jena Experiment). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. We tracked soil microbial basal respiration (BR; µlO2/g dry soil/h) and biomass carbon (Cmic; µgC/g dry soil) over a time period of 12 years (2003-2014) and examined the role of plant diversity and plant functional group composition for the spatial and temporal stability (calculated as mean/SD) of soil microbial properties (basal respiration and biomass) in bulk-soil. Our results highlight the importance of plant functional group composition for the spatial and temporal stability of soil microbial properties, and hence for microbially-driven ecosystem processes, such as decomposition and element cycling, in temperate semi-natural grassland.
Resumo:
Site-specific management (SSM) is a form of precision agriculture whereby decisions on resource application and agronomic practices are improved to better match soil and crop requirements as they vary in the field. SSM enables the identification of regions (homogeneous management zones) within the area delimited by field boundaries. These subfield regions constitute areas that have similar permanent characteristics. Traditional soil and pasture sampling and the necessary laboratory analysis are time-consuming, labour-intensive and cost prohibitive, not viable from a SSM perspective because it needs a large number of soil and pasture samples in order to achieve a good representation of soil properties, nutrient levels and pasture quality and productivity. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of soil nutrients and pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Three types of sensors were evaluated in a 7ha pasture experimental field: an electromagnetic induction sensor (“DUALEM 1S”, which measures the soil apparent electrical conductivity, ECa), an active optical sensor ("OptRx®", which measures the NDVI, “Normalized Difference Vegetation Index”) and a capacitance probe ("GrassMaster II" which estimates plant mass). The results indicate the possibility of using a soil electrical conductivity probe as, probably, the best tool for monitoring not only some of the characteristics of the soil, but also those of the pasture, which could represent an important help in simplifying the process of sampling and support SSM decision making, in precision agriculture projects. On the other hand, the significant and very strong correlations obtained between capacitance and NDVI and between any of these parameters and the pasture productivity shows the potential of these tools for monitoring the evolution of spatial and temporal patterns of the vegetative growth of biodiverse pasture, for identifying different plant species and variability in pasture yield in Alentejo dry-land farming systems. These results are relevant for the selection of an adequate sensing system for a particular application and open new perspectives for other works that would allow the testing, calibration and validation of the sensors in a wider range of pasture production conditions, namely the extraordinary diversity of botanical species that are characteristic of the Mediterranean region at the different periods of the year.
Resumo:
The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
(Spatial-temporal variation in coiled and straight morphotypes of Cylindrospermopsis raciborskii (Wolsz) Seenayya et Subba Raju (Cyanobacteria)). This study reports the spatial and temporal behavior of straight and coiled morphotypes of C. raciborskii in a reservoir in Brazil`s semiarid region as well as the main factors responsible for the variability. Two set of samples were collected from the subsurface and bottom in the central region of a reservoir in two seasonal periods (dry January 2005; rainy June 2005) over 20-hour sampling periods during daylight (8 am, 12 pm and 4 pm) and dark (8 pm, 12 am and 4 am) hours. Measurements of abiotic parameters were determined concurrently to the sampling of biotic variables. Two C. raciborskii morphotypes were found in the reservoir: straight and coiled. There was no difference in density of the straight and coiled C. raciborskii morphotypes between the different sampling times for either season. Vertical differences were found in the distribution of both morphotypes in both seasons, with greater densities recorded at the subsurface. Densities of the two C. raciborskii morphotypes were greater in the dry season, with the density of the coiled morphotype at the surface two-fold greater than that of the straight morphotype and that found in the rainy season. The ecological success of the coiled morphotype was due to thermal stratification, whereas a mixed condition was determinant in the success of the straight morphotype.
Resumo:
Arriving in Brisbane some six years ago, I could not help being impressed by what may be prosaically described as its atmospheric amenity resources. Perhaps this in part was due to my recent experiences in major urban centres in North America, but since that time, that sparkling quality and the blue skies seem to have progressively diminished. Unfortunately, there is also objective evidence available to suggest that this apparent deterioration is not merely the result of habituation of the senses. Air pollution data for the city show trends of increasing concentrations of those very substances that have destroyed the attractiveness of major population centres elsewhere, with climates initially as salubrious. Indeed, present figures indicate that photochemical smog in unacceptably high concentrations is rapidly becoming endemic also over Brisbane. These regrettable developments should come as no surprise. The society at large has not been inclined to respond purposefully to warnings of impending environmental problems, despite the experiences and publicity from overseas and even from other cities within Australia. Nor, up to the present, have certain politicians and government officials displayed stances beyond those necessary for the maintenance of a decorum of concern. At this stage, there still exists the possibility for meaningful government action without the embarrassment of losing political favour with the electorate. To the contrary, there is every chance that such action may be turned to advantage with increased public enlightenment. It would be more than a pity to miss perhaps the final remaining opportunity: Queensland is one of the few remaining places in the world with sufficient resources to permit both rational development and high environmental quality. The choice appears to be one of making a relatively minor investment now for a large financial and social gain the near future, or, permitting Brisbane to degenerate gradually into just another stagnated Los Angeles or Sydney. The present monograph attempts to introduce the problem by reviewing the available research on air quality in the Brisbane area. It also tries to elucidate some seemingly obvious, but so far unapplied management approaches. By necessity, such a broad treatment needs to make inroads into extensive ranges of subject areas, including political and legal practices to public perceptions, scientific measurement and statistical analysis to dynamics of air flow. Clearly, it does not pretend to be definitive in any of these fields, but it does try to emphasize those adjustable facets of the human use system of natural resources, too often neglected in favour of air pollution control technology. The crossing of disciplinary boundaries, however, needs no apology: air quality problems are ubiquitous, touching upon space, time and human interaction.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of NO2 levels, by using geostatisti- cal approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space-time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This method- ology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.
Resumo:
The Amazon River basin is important in the contribution of dissolved material to oceans (4% worldwide). The aim of this work was to study the spatial and the temporal variability of dissolved inorganic materials in the main rivers of the Amazon basin. Data from 2003 to 2011 from six gauging stations of the ORE-HYBAM localized in Solimões, Purus, Madeira and Amazon rivers were used for this study. The concentrations of Ca2+, Na+, K+, Mg2+, Cl-, SO4 -2, HCO3 - and SiO2 were analyzed. At the stations of Solimões and Amazon rivers, the concentrations of Ca2+, Mg2+, HCO3 - and SO4 -2 had heterogeneous distribution over the years and did not show seasonality. At the stations of Madeira river, the concentration of these ions had seasonality inversely proportional to water discharge (dilution-concentration effect). Similar behavior was observed for the concentrations of Cl- and Na+ at the stations of the Solimões, Amazon and Madeira rivers, indicating almost constant release of Cl- and Na+ fluxes during the hydrological cycle. K+ and SiO2 showed almost constant concentrations throughout the years and all the stations, indicating that their flows depend on the river discharge variation. Therefore, the temporal variability of the dissolved inorganic material fluxes in the Solimões and Amazon rivers depends on the hydro-climatic factor and on the heterogeneity of the sources. In the Madeira and Purus rivers there is less influence of these factors, indicating that dissolved load fluxes are mainly associated to silicates weathering. As the Solimões basin contributes approximately 84% of the total flux of dissolved materials in the basin and is mainly under the influence of a hydro-climatic factor, we conclude that the temporal variability of this factor controls the temporal variability of the dissolved material fluxes of the Amazon basin.
Resumo:
Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous area.
Resumo:
We described the colonization dynamics of Staphylococcus aureus in a group of 266 healthy carriers over a period of approximately 1 year. We used precise genotyping methods, i.e., amplified fragment length polymorphism (AFLP), spa typing, and double-locus sequence typing (DLST), to detect changes in strain identity. Strain change took place rather rarely: out of 89 carriers who had initially been colonized, only 7 acquired a strain different from the original one. Approximately one-third of the carriers eliminated the colonization, and a similar number became newly colonized. Some of these events probably represent detection failure rather than genuine colonization loss or acquisition. Lower bacterial counts were associated with increased probability of eliminating the colonization. We have confirmed a high mutation rate in the spa locus: 6 out of 53 strains underwent mutation in the spa locus. There was no overall change in S. aureus genotype composition.
Resumo:
Islet-brain 1 (IB1) was recently identified as a DNA-binding protein of the GLUT2 gene promoter. The mouse IB1 is the rat and human homologue of the Jun-interacting protein 1 (JIP-1) which has been recognized as a key player in the regulation of c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways. JIP-1 is involved in the control of apoptosis and may play a role in brain development and aging. Here, IB1 was studied in adult and developing mouse brain tissue by in situ hybridization, Northern and Western blot analysis at cellular and subcellular levels, as well as by immunocytochemistry in brain sections and cell cultures. IB1 expression was localized in the synaptic regions of the olfactory bulb, retina, cerebral and cerebellar cortex and hippocampus in the adult mouse brain. IB1 was also detected in a restricted number of axons, as in the mossy fibres from dentate gyrus in the hippocampus, and was found in soma, dendrites and axons of cerebellar Purkinje cells. After birth, IB1 expression peaks at postnatal day 15. IB1 was located in axonal and dendritic growth cones in primary telencephalon cells. By biochemical and subcellular fractionation of neuronal cells, IB1 was detected both in the cytosolic and membrane fractions. Taken together with previous data, the restricted neuronal expression of IB1 in developing and adult brain and its prominent localization in synapses suggest that the protein may be critical for cell signalling in developing and mature nerve terminals.