872 resultados para Spatial pattern


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free-living amoebae of the cellular slime mould Dictyostelium discoideum aggregate when starved and give rise to a long and thin multicellular structure, the slug. The slug resembles a metazoan embryo, and as with other embryos it is possible to specify a fate map. In the case of Dictyostelium discoideum the map is especially simple: cells in the anterior fifth of the slug die and form a stalk while the majority of those in the posterior differentiate into spores. The genesis of this anterior-posterior distinction is the subject of our review. In particular, we ask: what are the relative roles of individual pre-aggregative predispositions and post-aggregative position in determining cell fate? We review the literature on the subject and conclude that both factors are important. Variations in nutritional status, or in cell cycle phase at starvation, can bias the probability that an amoeba differentiates into a stalk cell or a spore. On the other hand, isolates, or slug fragments, consisting of only prestalk cells or only prespore cells can regulate so as to result in a normal range of both cell types. We identify three levels of control, each being responsible for guiding patterning in normal development: (i) 'coin tossing', whereby a cell autonomously exhibits a preference for developing along either the stalk or the spore pathway with relative probabilities that can be influenced by the environment; (ii) 'chemical kinetics', whereby prestalk and prespore cells originate from undifferentiated amoebae on a probabilistic basis but, having originated, interact (e.g. via positive and negative feedbacks), and the interaction influences the possibility of conversion of one cell type into the other, and (iii) 'positional information', in which the spatial distribution of morphogens in the slug influences the pathway of differentiation. In the case of possibilities (i) and (ii), sorting out of like cell types leads to the final spatial pattern. In the case of possibility (iii), the pattern arises in situ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have made careful counts of the exact number of spore, stalk and basal disc cells in small fruiting bodies of Dictyostelium discoideum (undifferentiated amoebae are found only rarely and on average their fraction is 4.96 x 10(-4)). (i) Within aggregates of a given size, the relative apportioning of amoebae to the main cell types occurs with a remarkable degree of precision. In most cases the coefficient of variation (c.v.) in the mean fraction of cells that form spores is within 4.86%. The contribution of stalk and basal disc cells is highly variable when considered separately (c.v.'s upto 25% and 100%, respectively), but markedly less so when considered together. Calculations based on theoretical models indicate that purely cell-autonomous specification of cell, fate cannot account for die observed accuracy of proportioning. Cell-autonomous determination to a prestalk or prespore condition followed by cell type interconversion, and stabilised by feedbacks, suffices to explain the measured accuracy. (ii) The fraction of amoebae that differentiates into spores increases monotonically with the total number of cells. This fraction rises from an average of 73.6% for total cell numbers below 30 and reaches 86.0% for cell numbers between 170 and 200 (it remains steady thereafter at around 86%). Correspondingly, the fraction of amoebae differentiating into stalk or basal disc decreases viith total size. These trends are in accordance with evolutionary expectations and imply that a mechanism for sensing the overall size of the aggregate also plays an essential role in the determination of cell-type proportions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch signaling acts in many diverse developmental spatial patterning processes. To better understand why this particular pathway is employed where it is and how downstream feedbacks interact with the signaling system to drive patterning, we have pursued three aims: (i) to quantitatively measure the Notch system's signal input/output (I/O) relationship in cell culture, (ii) to use the quantitative I/O relationship to computationally predict patterning outcomes of downstream feedbacks, and (iii) to reconstitute a Notch-mediated lateral induction feedback (in which Notch signaling upregulates the expression of Delta) in cell culture. The quantitative Notch I/O relationship revealed that in addition to the trans-activation between Notch and Delta on neighboring cells there is also a strong, mutual cis-inactivation between Notch and Delta on the same cell. This feature tends to amplify small differences between cells. Incorporating our improved understanding of the signaling system into simulations of different types of downstream feedbacks and boundary conditions lent us several insights into their function. The Notch system converts a shallow gradient of Delta expression into a sharp band of Notch signaling without any sort of feedback at all, in a system motivated by the Drosophila wing vein. It also improves the robustness of lateral inhibition patterning, where signal downregulates ligand expression, by removing the requirement for explicit cooperativity in the feedback and permitting an exceptionally simple mechanism for the pattern. When coupled to a downstream lateral induction feedback, the Notch system supports the propagation of a signaling front across a tissue to convert a large area from one state to another with only a local source of initial stimulation. It is also capable of converting a slowly-varying gradient in parameters into a sharp delineation between high- and low-ligand populations of cells, a pattern reminiscent of smooth muscle specification around artery walls. Finally, by implementing a version of the lateral induction feedback architecture modified with the addition of an autoregulatory positive feedback loop, we were able to generate cells that produce enough cis ligand when stimulated by trans ligand to themselves transmit signal to neighboring cells, which is the hallmark of lateral induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel communication technique which utilizes a set of mutually distinguishable optical patterns instead of convergent facula to transmit information. The communication capacity is increased by exploiting the optical spatial bandwidth resources. An optimum detector for this communication is proposed based on maximum-likelihood decision. The fundamental rule of designing signal spatial pattern is formulated from analysis of the probability of error decision. Finally, we present a typical electro-optical system scheme of the proposed communication. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial pattern of the small fish community was studied seasonally in 1996 in the Biandantang Lake. Based on plant cover, the lake was divided into five habitats, arranged in the order by plant structure complexity from complex to simple: Vallisneria spiralis habitat (V habitat), Vallisneria spiralis-Myriophyllum spicatum habitat (V-M habitat), Myriophyllum spicatum habitat (M habitat), Nelunbo nucefera habitat (N habitat), and no vegetation habitat (NV habitat). A modified popnet was used for quantitative sampling of small fishes. A total of 16 fish species were collected; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva, Carassius auratus and Paracheilognathus imberis were the five numerically dominant species. In both summer and autumn, the total density of small fishes was about 10 ind m(-2). Generally, Ctenogobius giurinus, a sedatory, benthic fish, was distributed more or less evenly among the five habitats, while the other four species had lower densities in the N habitat and NV habitat, which had the simplest structures. The distribution of the small fish species showed seasonal variations. In winter, most species concentrated in the V habitat, which had the most complex structure. In spring, the fish had low densities in the N and NV habitat, and were more or less evenly distributed in the other habitats. In summer, the fish had a low density in the NV habitat, and were evenly distributed in the other habitats. In autumn, the fish had higher densities in the V-M and M habitats than in the others. Generally, spatial overlaps between the dominant species were higher in winter than in the other seasons. It was suggested that the variations in the importance of predation risk and resource competition in habitat choice determined the seasonal changes of spatial patterns in the small fishes in the Biandantang Lake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is more and more acknowledged that land-use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. Supported by the Landsat TM digital images, spatial patterns and temporal variation of land-use change during 1995 -2000 are studied in the paper. According to the land-use dynamic degree model, supported by the 1km GRID data of land-use change and the comprehensive characters of physical, economic and social features, a dynamic regionalization of land-use change is designed to disclose the spatial pattern of land-use change processes. Generally speaking, in the traditional agricultural zones, e.g., Huang-Huai-Hai Plains, Yangtze River Delta and Sichuan Basin, the built-up and residential areas occupy a great proportion of arable land, and in the interlock area of farming and pasturing of northern China and the oases agricultural zones, the reclamation I of arable land is conspicuously driven by changes of production conditions, economic benefits and climatic conditions. The implementation of "returning arable land into woodland or grassland" policies has won initial success in some areas, but it is too early to say that the trend of deforestation has been effectively reversed across China. In this paper, the division of dynamic regionalization of land-use change is designed, for the sake of revealing the temporal and spatial features of land-use change and laying the foundation for the study of regional scale land-use changes. Moreover, an integrated study, including studies of spatial pattern and temporal process of land-use change, is carried out in this paper, which is an interesting try on the comparative studies of spatial pattern on change process and the change process of spatial pattern of land-use change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GIMMS NDVI database and geo-statistics were used to depict the spatial distribution and temporal stability of NDVI on the Mongolian Plateau. The results demonstrated that: (1) Regions of interest with high NDVI indices were distributed primarily in forested mountainous regions of the east and the north, areas with low NDVI indices were primarily distributed in the Gobi desert regions of the west and the southwest, and areas with moderate NDVI values were mainly distributed in a middle steppe strap from northwest to southeast. (2) The maximum NDVI values maintained for the past 22 years showed little variation. The average NDVI variance coefficient for the 22-year period was 15.2%. (3) NDVI distribution and vegetation cover showed spatial autocorrelations on a global scale. NDVI patterns from the vegetation cover also demonstrated anisotropy; a higher positive spatial correlation was indicated in a NW-SE direction, which suggested that vegetation cover in a NW-SE direction maintained increased integrity, and vegetation assemblage was mainly distributed in the same specific direction. (4) The NDVI spatial distribution was mainly controlled by structural factors, 88.7% of the total spatial variation was influenced by structural and 11.3% by random factors. And the global autocorrelation distance was 1178 km, and the average vegetation patch length (NW-SE) to width (NE-SW) ratio was approximately 2.4:1.0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distributed outstar, a generalization of the outstar neural network for spatial pattern learning, is introduced. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field of arbitrarily many nodes, whose activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse, whereby a path weight decreases in joint proportion to the transmitted path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals. Three synaptic transmission functions, by a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all. When source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the unit of long-term memory in such a system is an adaptive threshold, rather than the multiplicative path weight widely used in neural models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.