972 resultados para Spatial modelling
Resumo:
Examples from the Murray-Darling basin in Australia are used to illustrate different methods of disaggregation of reconnaissance-scale maps. One approach for disaggregation revolves around the de-convolution of the soil-landscape paradigm elaborated during a soil survey. The descriptions of soil ma units and block diagrams in a soil survey report detail soil-landscape relationships or soil toposequences that can be used to disaggregate map units into component landscape elements. Toposequences can be visualised on a computer by combining soil maps with digital elevation data. Expert knowledge or statistics can be used to implement the disaggregation. Use of a restructuring element and k-means clustering are illustrated. Another approach to disaggregation uses training areas to develop rules to extrapolate detailed mapping into other, larger areas where detailed mapping is unavailable. A two-level decision tree example is presented. At one level, the decision tree method is used to capture mapping rules from the training area; at another level, it is used to define the domain over which those rules can be extrapolated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
1. Statistical modelling is often used to relate sparse biological survey data to remotely derived environmental predictors, thereby providing a basis for predictively mapping biodiversity across an entire region of interest. The most popular strategy for such modelling has been to model distributions of individual species one at a time. Spatial modelling of biodiversity at the community level may, however, confer significant benefits for applications involving very large numbers of species, particularly if many of these species are recorded infrequently. 2. Community-level modelling combines data from multiple species and produces information on spatial pattern in the distribution of biodiversity at a collective community level instead of, or in addition to, the level of individual species. Spatial outputs from community-level modelling include predictive mapping of community types (groups of locations with similar species composition), species groups (groups of species with similar distributions), axes or gradients of compositional variation, levels of compositional dissimilarity between pairs of locations, and various macro-ecological properties (e.g. species richness). 3. Three broad modelling strategies can be used to generate these outputs: (i) 'assemble first, predict later', in which biological survey data are first classified, ordinated or aggregated to produce community-level entities or attributes that are then modelled in relation to environmental predictors; (ii) 'predict first, assemble later', in which individual species are modelled one at a time as a function of environmental variables, to produce a stack of species distribution maps that is then subjected to classification, ordination or aggregation; and (iii) 'assemble and predict together', in which all species are modelled simultaneously, within a single integrated modelling process. These strategies each have particular strengths and weaknesses, depending on the intended purpose of modelling and the type, quality and quantity of data involved. 4. Synthesis and applications. The potential benefits of modelling large multispecies data sets using community-level, as opposed to species-level, approaches include faster processing, increased power to detect shared patterns of environmental response across rarely recorded species, and enhanced capacity to synthesize complex data into a form more readily interpretable by scientists and decision-makers. Community-level modelling therefore deserves to be considered more often, and more widely, as a potential alternative or supplement to modelling individual species.
Resumo:
Lutzomyia (Nyssomyia) whitmani s.l.is the main vector of cutaneous leishmaniasis in state of Mato Grosso, but little is known about environmental determinants of its spatial distribution on a regional scale. Entomologic surveys of this sand fly species, conducted between 1996 and 2001 in 41 state municipalities, were used to investigate the relationships between environmental factors and the presence of the species, and to develop a spatial model of habitat suitability. The relationship between averaged CDC light trap indexes and 15 environmental and socio-economic factors were tested by logistic regression (LR) analysis. Spatial layers of deforestation tax and the Brazilian index of gross net production (IGNP) were identified as significant explanatory variables for vector presence in the LR model, and these were then overlaid with habitat maps. The highest habitat suitability in 2001 was obtained for the heavily deforested areas in the Central-North, South, East, and Southwest of Mato Grosso, particularly in municipalities with lower IGNP values.
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-
Resumo:
Preservation of rivers and water resources is crucial in most environmental policies and many efforts are made to assess water quality. Environmental monitoring of large river networks are based on measurement stations. Compared to the total length of river networks, their number is often limited and there is a need to extend environmental variables that are measured locally to the whole river network. The objective of this paper is to propose several relevant geostatistical models for river modeling. These models use river distance and are based on two contrasting assumptions about dependency along a river network. Inference using maximum likelihood, model selection criterion and prediction by kriging are then developed. We illustrate our approach on two variables that differ by their distributional and spatial characteristics: summer water temperature and nitrate concentration. The data come from 141 to 187 monitoring stations in a network on a large river located in the Northeast of France that is more than 5000 km long and includes Meuse and Moselle basins. We first evaluated different spatial models and then gave prediction maps and error variance maps for the whole stream network.
Resumo:
We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold.
Resumo:
Funded by Energy Technologies Institute EPSRC-Supergen. Grant Number: EP/M013200/1
Resumo:
The paper presents a computational system based upon formal principles to run spatial models for environmental processes. The simulator is named SimuMap because it is typically used to simulate spatial processes over a mapped representation of terrain. A model is formally represented in SimuMap as a set of coupled sub-models. The paper considers the situation where spatial processes operate at different time levels, but are still integrated. An example of such a situation commonly occurs in watershed hydrology where overland flow and stream channel flow have very different flow rates but are highly related as they are subject to the same terrain runoff processes. SimuMap is able to run a network of sub-models that express different time-space derivatives for water flow processes. Sub-models may be coded generically with a map algebra programming language that uses a surface data model. To address the problem of differing time levels in simulation, the paper: (i) reviews general approaches for numerical solvers, (ii) considers the constraints that need to be enforced to use more adaptive time steps in discrete time specified simulations, and (iii) scaling transfer rates in equations that use different time bases for time-space derivatives. A multistep scheme is proposed for SimuMap. This is presented along with a description of its visual programming interface, its modelling formalisms and future plans. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates how demographic (socioeconomic) and land-use (physical and environmental) data can be integrated within a decision support framework to formulate and evaluate land-use planning scenarios. A case-study approach is undertaken with land-use planning scenarios for a rapidly growing coastal area in Australia, the Shire of Hervey Bay. The town and surrounding area require careful planning of the future urban growth between competing land uses. Three potential urban growth scenarios are put forth to address this issue. Scenario A ('continued growth') is based on existing socioeconomic trends. Scenario B ('maximising rates base') is derived using optimisation modelling of land-valuation data. Scenario C ('sustainable development') is derived using a number of social, economic, and environmental factors and assigning weightings of importance to each factor using a multiple criteria analysis approach. The land-use planning scenarios are presented through the use of maps and tables within a geographical information system, which delineate future possible land-use allocations up until 2021. The planning scenarios are evaluated by using a goal-achievement matrix approach. The matrix is constructed with a number of criteria derived from key policy objectives outlined in the regional growth management framework and town planning schemes. The authors of this paper examine the final efficiency scores calculated for each of the three planning scenarios and discuss the advantages and disadvantages of the three land-use modelling approaches used to formulate the final scenarios.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Acknowledgements This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). The authors are grateful to Niall McNamara (Centre for Ecology & Hydrology, Lancaster) for coordinating the project and to Dagmar Henner (University of Aberdeen) for project assistance. We are also grateful to staff at the ETI, particularly to Geraldine Newton-Cross, Geraint Evans and Hannah Evans for constructive advice and feedback, and to Jonathan Oxley for project support. The ELUM Software Package contains Ordnance Survey data © Crown copyright and database right 2012.
Resumo:
We re-mapped the soils of the Murray-Darling Basin (MDB) in 1995-1998 with a minimum of new fieldwork, making the most out of existing data. We collated existing digital soil maps and used inductive spatial modelling to predict soil types from those maps combined with environmental predictor variables. Lithology, Landsat Multi Spectral Scanner (Landsat MSS), the 9-s digital elevation model (DEM) of Australia and derived terrain attributes, all gridded to 250-m pixels, were the predictor variables. Because the basin-wide datasets were very large data mining software was used for modelling. Rule induction by data mining was also used to define the spatial domain of extrapolation for the extension of soil-landscape models from existing soil maps. Procedures to estimate the uncertainty associated with the predictions and quality of information for the new soil-landforms map of the MDB are described. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies